If the roots of the equation (b - c)x2 + (c -a)x + (a - b)= 0 are equal. Then prove that 2 b = a + c.
PLZ HELP!!!
Answers
Step-by-step explanation:
Given Equation is (b - c)x² + (c - a)x + (a - b) = 0
Here a = (b - c), b = (c - a), c = (a - b).
Now,
Given that the roots are equal.
∴ b² - 4ac = 0
⇒ (c - a)² - 4(b - c)(a - b) = 0
⇒ c² + a² - 2ac - 4[ab - b² - ac + cb] = 0
⇒ c² + a² - 2ac - 4ab + 4b² + 4ac - 4cb = 0
⇒ c² + a² + 2ac - 4ab - 4cb + 4b² = 0
⇒ (a + c - 2b)² = 0
⇒ a + c = 2b
Hope it helps!
Solution:
We have been given that a quadratic Equation (b - c)x² + (c -a)x + (a - b)= 0 and also roots of the equation is Equal i.e Discriminant (D) = 0
Define Discriminant of the Equation:
For Equal roots , We have:
- Discriminant = 0
⇒ b² - 4ac = 0
⇒ ( c - a)² - 4(b - c)(a - b) = 0
⇒ [c² + a² - 2ac - 4{b(a - b) - c(a - b)}] = 0
⇒ [ c² + a² - 2ac- 4{ab - b² - ca + bc ] = 0
⇒ [a² +c² - 2ac - 4ab -4b² + 4ac -4bc ] = 0
⇒ ( a + c - 2b)² = 0
⇒ a + c - 2b = 0
⇒ a + c = 2b