if the roots of the equation(c²-ab)x²-2(a²-bc)x+(b²-ac)=0 are real and equal, show that either a=0 or (a³+b³+c³)=3abc.
please make it simple not complicated.....
Don't copy.........
Answers
Answered by
35
- Equation:- (c² - ab)x² - 2(a² - bc)x + (b² - ac)
- we need to show that either a = 0 or (a³ + b³ + c³ = 3abc.
Given quadratic equation:-
- (c² - ab)x² - 2(a² - bc)x + (b² - ac)
where ,
- a = (c² - ab)
- b = -2(a² - bc)
- c = (b² - ac)
Roots of quadratic equation are equal so,
- D = 0
- ≫ D = b² - 4ac
- b² - 4ac = 0
» [-2(a² - bc)]² - 4 × (c² - ab) × (b² - ac)
» 4(a⁴ + b²c² - 2a²bc = 4[c²(b²-ac)-ab(b²-ac)]
» a⁴ + b²c² - 2a²bc = b²c² - ac³ - ab³ + a²bc
» a⁴ + b²c²- b²c² -2a²bc -a²bc = -ac³ - ab³
» a⁴ + ac³+ ab³ - 3a²bc = 0
» a(a³ + b³ + c³ - 3abc) = 0
So, either a = 0
- Or
» a³ + b³ + c³ - 3abc = 0
» a³ + b³ + c³ = 3abc
Hence, Proved
either a = 0 or a³ + b³ + c³ = 3abc.
Answered by
32
Step-by-step explanation:
Similar questions