Math, asked by Anonymous, 9 months ago

if the roots of the equation(c²-ab)x²-2(a²-bc)x+(b²-ac)=0 are real and equal, show that either a=0 or (a³+b³+c³)=3abc.
please make it simple not complicated.....
Don't copy.........​

Answers

Answered by Anonymous
35

 \large\bf\underline{Given:-}

  • Equation:- (c² - ab)x² - 2(a² - bc)x + (b² - ac)

 \large\bf\underline {To \: find:-}

  • we need to show that either a = 0 or (a³ + b³ + c³ = 3abc.

 \huge\bf\underline{Solution:-}

Given quadratic equation:-

  • (c² - ab)x² - 2(a² - bc)x + (b² - ac)

where ,

  • a = (c² - ab)
  • b = -2(a² - bc)
  • c = (b² - ac)

Roots of quadratic equation are equal so,

  • D = 0
  • D = b² - 4ac
  • b² - 4ac = 0

» [-2(a² - bc)]² - 4 × (c² - ab) × (b² - ac)

» 4(a⁴ + b²c² - 2a²bc = 4[c²(b²-ac)-ab(b²-ac)]

» a⁴ + b²c² - 2a²bc = b²c² - ac³ - ab³ + a²bc

» a⁴ + b²c²- b²c² -2a²bc -a²bc = -ac³ - ab³

» a⁴ + ac³+ ab³ - 3a²bc = 0

» a(a³ + b³ + c³ - 3abc) = 0

So, either a = 0

  • Or

» a³ + b³ + c³ - 3abc = 0

» a³ + b³ + c³ = 3abc

Hence, Proved

either a = 0 or a³ + b³ + c³ = 3abc.

\rule{200}3

Answered by Anonymous
32

Step-by-step explanation:

 \mathfrak{ \large \bold \red{ \underline{ \underline{question}}}} \\  \\ {  \large{ ({c }^{2} - ab)  {x}^{2}  - 2( {a}^{2} - bc)x + ( {b}^{2}  - ac) = 0 }} \\  \\ { \large{show \: that \: a = 0 \: or \: ( {a}^{3}  +  {b}^{3} +  {c}^{3}  ) = 3abc}} \\  \\ { \large \bold \green{ \underline{solution}}} \\ {  \large{ \underline{a = ( {c}^{2} - ab) and \: b =  - 2( {a}^{2}  - bc) \: and \: c = ( {b}^{2}  - ac) }}} \\  \\ { \large \orange{ \underline{since \: root \: are \: equal \: so \: d = 0}}} \\ { \large \blue{ \underline{formula \:  \: d =  {b}^{2} - 4ac }}} \\ { \large{( - 2( {a}^{2}  - bc)) {}^{2}  - 4( {c }^{2} - ab)( {b }^{2}  - ac) = 0 }} \\ { \large{4( {a}^{4}  - 2 {a}^{2}c +  {b }^{2}  {c}^{2} ) - 4( {b}^{2} {c }^{2}  - a {c}^{3}   - a {b}^{3}  +  {a}^{2} bc)  = 0}} \\ { \large{ {a}^{4}  - 3 {a}^{2} bc + a {c}^{3} + a {b}^{3} = 0   }} \\{ \large{a( {a}^{3}  - 3abc +  {a}^{3}  +  {b}^{3}) = 0 }} \\ { \large{a = 0 \:  \: or \:  {a}^{3}  +  {c}^{3}  +  {b}^{3}  = 3abc}} \\  \\ { \large \bold \pink{ \underline{hence \: prove}}}

Similar questions