Math, asked by sreyasree67, 9 months ago

if the roots of the equation (q-r)x^2+(r-p)x+p-q=0, then show that p,q and r are in AP​.

Answers

Answered by rksinghjsm2003
0

Answer:  let, if the root is =alpha and beta  (\beta \alpha)                                                                                            

               

Step-by-step explanation:

(q-r)x^2+(r-p)x+p-q=0                            let putting x=1

=> q-r+r-p+p-q=0                                  so,1 is first root of this equation(\alpha=1)

=> so, \alpha \beta=c/a

=> 1*\beta=c/a                                             so, c=p-q and a =q-r

=>\beta=p-q/q-r

so, root are 1 and p-q/q-r

Similar questions