Math, asked by DasPoustab, 1 month ago

If the roots of the equation
 {ax}^{2}  -  {bx} + 5c = 0
are in the ratio 4:5 , then

A)
 ab = 18 {c}^{2}
B)
81 {b}^{2}  = 4ac
C)
bc =  {a}^{2}
D)
4 {b}^{2}  = 81ac



Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:Roots \: of \:  {ax}^{2}  -  bx + 5c = 0 \: are \: in \: the \: ratio \: 4:  5.

So,

\rm :\longmapsto\:Let \: assume \:that \:  roots \: be \: 4 \alpha  \: and \: 5 \alpha

We know that,

\boxed{\red{\sf Sum\ of\ the\ roots=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm :\longmapsto\:4 \alpha  + 5 \alpha  =  - \dfrac{( - b)}{a}

\rm :\longmapsto\:9\alpha  =   \dfrac{b}{a}

\red{\rm :\longmapsto\:\alpha  =  \dfrac{b}{9a}  -  -  - (1)}

Also,

We know that,

\boxed{\purple{\sf Product\ of\ the\ roots=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm :\longmapsto\:4 \alpha  \times \cancel 5 \alpha  = \dfrac{ \cancel{5} \: c}{a}

\rm :\longmapsto\:4 { \alpha }^{2}   = \dfrac{c}{a}

On substituting the value from equation (1), we get

\rm :\longmapsto\:4 {\bigg(\dfrac{b}{9a} \bigg) }^{2} = \dfrac{c}{a}

\rm :\longmapsto\:\dfrac{4 {b}^{2} }{81 {a}^{2} }  = \dfrac{c}{a}

\rm :\longmapsto\:\dfrac{4 {b}^{2} }{81 {a}}  = c

 \purple{\bf\implies \: {4b}^{2} = 81ac}

Hence,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \purple{\underbrace{\boxed{ \purple{ \bf{ \: Option \: (d) \: is \: correct.}}}}}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

  • If Discriminant, D > 0, then roots of the equation are real and unequal.

  • If Discriminant, D = 0, then roots of the equation are real and equal.

  • If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac
Similar questions