Math, asked by tarannumjunaid, 11 months ago

If the roots of the equation (x-a)(x-b)+(x-b)(x-c)+(x-c )(x-a)=0 are real and equal then show that a=b=c

Answers

Answered by Anonymous
12

SOLUTION

The given quadratic equation is

(x-a)(x-b)+(x-b)(x-c)+(x-a)(x-c)=0

 =  >  {x}^{2}  - ax - bx + ab +  {x}^{2}  - bx  - cx + bc +  {x}^{2}  - cx - ax + ca = 0 \\   =  >  {3x}^{2}  - 2(a + b + c)x + (ab + bc + ca) = 0 \\  \\ discriminant  = ( - 2(a + b + c)) {}^{2}  - 4  \times 3 \times (ab  + bc + ca) \\  =  > 4(a + b + c) {}^{2}  - 12(ab + bc + ca) \\  =  > 4( {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ca - 3ab - 3bc - 3ca) \\  =  > 4( {a}^{2}  +  {b}^{2}  +  {c}^{2}  - ab - bc - ca) \\  =  > 2(2 {a}^{2}  + 2 {b}^{2}  + 2 {c}^{2}  - 2ab - 2bc - 2ca) \\  =  > 2(( {a}^{2}  - 2ab +  {b}^{2} ) + ( {b}^{2}  - 2bc +  {c}^{2} ) + ( {c}^{2}  - 2ca +   {a}^{2} )) \\  =  > 2((a - b) {}^{2}  + ( {b - c)}^{2}  + ( {c - a)}^{2} ) \\  =  > since \: (a - b) {}^{2}  + (b - c) {}^{2}  + (c - a) {}^{2} is \: always \: positive.

D> 0. so, the roots the given quadratic equation are equal.

Where a= b= c, D = 2× 0 = 0

Thus, the roots of the given quadratic equation are equal.

hope it helps ☺️⬆️

Similar questions