Math, asked by yogeshchavan8049, 1 month ago

If the roots of the equation X square - 6 X + 10 is equal to zero are alpha and beta then Alpha square plus beta square is

Answers

Answered by amansharma264
77

EXPLANATION.

α and β are the roots of the equation.

⇒ x² - 6x + 10 = 0.

As we know that,

Sum of the zeroes of the quadratic polynomial.

⇒ α + β = - b/a.

⇒ α + β = -(-6)/1 = 6.

Products of the zeroes of the quadratic polynomial.

⇒ αβ = c/a.

⇒ αβ = (10)/1 = 10.

To find : α² + β².

⇒ α² + β² = [α + β]² - 2αβ.

Put the values in the equation, we get.

⇒ α² + β² = [6]² - 2(10).

⇒ α² + β² = 36 - 20.

⇒ α² + β² = 16.

                                                                                                                     

MORE INFORMATION.

Nature of the roots of the quadratic expression.

(1) = Real and unequal, if b² - 4ac > 0.

(2) = Rational and different, if b² - 4ac is a perfect square.

(3) = Real and equal, if b² - 4ac = 0.

(4) = If D < 0 Roots are imaginary and unequal Or complex conjugate.

Answered by SƬᏗᏒᏇᏗƦƦᎥᎧƦ
129

Corrected question:

  • If the roots of the equation x² - 6x + 10 is equal to zero are α and β then α² + β² is.

Information provided with us:

  • Equation is x² - 6x + 10
  • The given equation roots are equal to zero are alpha and beta.

Need to be calculated:

  • Alpha square plus beta square

Let's start:

The standard form of a quadratic equation is,

  •  \tt{ax {} ^{2} + bx + c = 0 }

As the given equation is x² - 6x + 10.

Here,

  • a is 1
  • b is 6
  • c is 10

Finding out sum of zeroes:-

_______________

Using Formula,

Sum of zeroes of polynomial:-

  • \red{ \underline{{\boxed{\sf{ \alpha  +  \beta \:  =  \: \dfrac{ - b}{a}   }}}}}

Here, we have b is 6 and a is 1.

Substituting the values we get,

:  \longmapsto \: \sf{ \alpha  +  \beta \:  = \:  \dfrac{  - (-6 )}{1}   }

:  \longmapsto \: \sf{ \alpha  +  \beta \:  = \:  \dfrac{ 6}{1}   }

:  \longmapsto \:  \boxed{\sf{ \alpha  +  \beta \:  = \:  6  }}

\therefore \:  \underline{ \sf{Sum \: of \: zeroes \: of \: polynomials \: is \: 6}}

Finding out product of the zeroes:-

‎ ‎ ‎ ‎ ‎ ‎ _______________

Using Formula,

Product of zeroes of a quadratic polynomial is calculated by,

  • \red{  \underline{\boxed{  \sf{ \alpha  \beta  \:  =  \:  \dfrac{c}{a} }}}}

Here we have,

  • c is 10
  • a is 1

Substituting the values we get,

:\longmapsto \: \sf{ \alpha  \beta  \:  =  \:  \dfrac{10}{1} }

 :\longmapsto \: \boxed{ \sf{ \alpha  \beta  \:  =  \:  10}}

\therefore \:  \underline{ \sf{Product\: of \: zeroes \: of \: polynomials \: is \: 10}}

Finding out α² + β²:-

Using Identity,

  • \red{  \underline{\boxed{  \sf{  a {}^{2}  +  b {}^{2} =  \: ( a  +  b) {}^{2} - 2 ab  }}}}

Here we have,

  • a + b is 6 (i.e, α + β)
  • a is 2 (i.e, α)
  • b is 10 (i.e., β)

Substituting the values we get,

\longrightarrow \:   \sf{  \alpha  {}^{2}  +  \beta  {}^{2} =  \: ( 6 ) {}^{2} - 2 (10) }

\longrightarrow \:   \sf{  \alpha  {}^{2}  +  \beta  {}^{2} =  \: ( 6 \times 6)- 2 (10) }

 \longrightarrow \:   \sf{  \alpha  {}^{2}  +  \beta  {}^{2} =  \: 36 \: -  \: 2 (10) }

 \longrightarrow \:   \sf{  \alpha  {}^{2}  +  \beta  {}^{2} =  \: 36 \: -  \: 2  \times 10 }

 \longrightarrow \:   \sf{  \alpha  {}^{2}  +  \beta  {}^{2} =  \: 36 \: -  \: 20 }

 \longrightarrow \:     \underline{\boxed{\sf{  \alpha  {}^{2}  +  \beta  {}^{2} =  \: 16}}}

  • \underline{\bf{Hence, \:  \alpha  {}^{2}  \:  +  \:  \beta  {}^{2}  \: is \: 16 \: }}
Similar questions