Math, asked by SnehasishPurkait, 2 months ago

if the roots of the equation x2+x+a=0 be real and unequal ,then prove that the roots of the equation 2x^2 -4(1+a)x+2a^2+3=0 are imaginary (a is real)

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Concept Used :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Now,

Here, it is given that

\rm :\longmapsto\: {x}^{2} + x + a  = 0\: has \: real \: and \: unequal \: roots.

\rm :\implies\:Discriminant, \: D  &gt; 0

\rm :\implies\: {b}^{2} - 4ac &gt; 0

Here, on comparing with ax² + bx + c = 0, we get

\rm :\longmapsto\:a = 1

\rm :\longmapsto\:b = 1

\rm :\longmapsto\:c = a

So, on substituting the values in above, we get

\rm :\longmapsto\: {(1)}^{2} - 4a &gt; 0

\rm :\longmapsto\: 1 - 4a &gt; 0

\bf\implies \:4a - 1 &lt; 0 -  -  - (1)

Now,

Consider,

\rm :\longmapsto\: {2x}^{2} - 4(1 + a) +  {2a}^{2} - 3 = 0

Now, further Consider,

Discriminant,

\rm :\longmapsto\:Discriminant, \:D  =  {B}^{2}  - 4AC

Here, on comparing with Ax² + Bx + C = 0 we get

\rm :\longmapsto\:A = 2

\rm :\longmapsto\:B =  - 4(1 + a)

\rm :\longmapsto\:C = 2 {a}^{2} - 3

On substituting the values, we get

 \rm \:  =  \:  \:  {(4(1 + a))}^{2} - 4 \times 2 \times ( {2a}^{2} + 3)

 \rm \:  =  \:  \:16(1 +  {a}^{2} + 2a) - 8( {2a}^{2} + 3)

 \rm \:  =  \:  \:8\bigg(2(1 +  {a}^{2} + 2a) - ( {2a}^{2} + 3) \bigg)

 \rm \:  =  \:  \:8\bigg(2 +  2{a}^{2} + 4a - {2a}^{2} - 3 \bigg)

 \rm \:  =  \:  \:8\bigg( 4a - 1\bigg)

\bf\implies \:Discriminant, \: D &lt; 0

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:4a \:  -  \: 1 \:  &lt;  \: 0 \bigg \}}

Hence, Roots of the equation are imaginary.

Similar questions