If the roots of the quadratic equation (a-b)x^2+(b-c)x+(c-a)=0, a unequal to b are equal, then prove that b+c=2a
Answers
◘ Given ◘
The roots of the quadratic equation (a - b)x² + (b - c)x + (c - a) = 0, are equal.
◘ To Prove ◘
That b + c = 2a.
◘ Proof ◘
As the zeros are equal, so D = 0.
→ D = b² - 4ac
In the given equation,
- a = (a - b)
- b = (b - c)
- c = (c - a)
Now,
Substituting the values :-
(b - c)² - 4(a - b)(c - a) = 0
⇒ b² + c² - 2bc - 4ac + 4a² + 4bc - 4ab = 0
⇒ b² + c² + 4a² + 4bc - 4ac - 4ab = 0
⇒ b² + c² + (-2a)² + 2bc + 2c(-2a) + 2(-2a)b = 0
⇒ (b + c - 2a)² = 0
⇒ b + c - 2a = 0
⇒ b + c = 2a
Hence, proved.
Given
If the roots of the quadratic equation (a-b)x^2+(b-c)x+(c-a)=0.
To prove
b + c = 2a
Proof
According to the quadratic formula
→ D = b² - 4ac
- a = (a - b)
- b = (b - c)
- c = (c - a)
→ (b - c)² - 4[(a - b)(c - a)] = 0
Apply identity : (a - b)² = a² + b² - 2ab
→ (b)² + (c)² - 2 × b × c - 4[a(c - a)-b(c - a)] = 0
→ b² + c² - 2bc - 4[ac - a² -bc + ba] = 0
→ b² + c² - 2bc - 4ac + 4a² + 4bc - 4ba = 0
→ 4a² + b² + c² - 4ac - 2bc + 4bc - 4ba = 0
→ 4a² + b² + c² - 4ab + 2bc - 4ac = 0
Apply identity : (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
→(-2a)² +(b)² +(c)² + 2*(-2a)*b + 2*b*c + 2*(-2a)*c = 0
→ (- 2a + b + c)² = 0
→ - 2a + b + c = 0
→ b + c = 2a
Hence,
- b + c = 2a -------proved