if the roots of this equation (a2 + b2)x2 - 2(ac +bd)x + (c2 + d2)=0
are equal prove that a/b =c/d
{plz note: i was trying to put 2 as square and it wasn't working,so all the twos exept the one in b are squares }
Plz help me solving this question
Answers
Answered by
20
Hey
Given equation is :-
( a² + b² )x² - 2( ac + bd ) + ( c² + d² ) = 0
Now ,
D = 0
So ,
b² - 4 ac = 0
=> [ - 2 ( ac + bd ) ] ² - 4 ( a² + b² ) ( c² + d² ) = 0
=> 4 ( a²c² + b²d² + 2abcd ) - 4 ( a²c² + a²d² + b²c² + b²d² ) = 0
=> 4 [ a²c² + b²d² + 2abcd - a²c² - a²d² - b²c² - b²d² ] = 0
=> 2abcd - a²d² - b²c² = 0
=> a²d² + b²c² - 2abcd = 0
=> ( ad - bc ) ² = 0
=> ac - bd = 0
=> ac = bd
So ,
a / b = c / d
♦ Proved ♦
thanks :)
Given equation is :-
( a² + b² )x² - 2( ac + bd ) + ( c² + d² ) = 0
Now ,
D = 0
So ,
b² - 4 ac = 0
=> [ - 2 ( ac + bd ) ] ² - 4 ( a² + b² ) ( c² + d² ) = 0
=> 4 ( a²c² + b²d² + 2abcd ) - 4 ( a²c² + a²d² + b²c² + b²d² ) = 0
=> 4 [ a²c² + b²d² + 2abcd - a²c² - a²d² - b²c² - b²d² ] = 0
=> 2abcd - a²d² - b²c² = 0
=> a²d² + b²c² - 2abcd = 0
=> ( ad - bc ) ² = 0
=> ac - bd = 0
=> ac = bd
So ,
a / b = c / d
♦ Proved ♦
thanks :)
Similar questions