if the roots of x^2+2px+mn=0 are real and equal, show that roots of x^2-2(n+m)x+(m^2+n^2+2p)=0 have real and equal roots
Answers
Answered by
0
♦ Quadratic Resolution ♦
√√ For real and equal roots , the discriminant 'D' of the equation :->
ax² + bx + c = 0 ---> D = b² - 4ac ≥ 0 √
Hence,
----> D [ x² + 2px + mn ] = [ 2p ]² - 4( mn ) = 4 ( p² - mn ) = 0 √√ [ given ]
=> p² = mn √√
Now,
---> D [ x^2-2(n+m)x+(m^2+n^2+2p) ]
= [ 2( m + n ) ]² - 4 [ m² + n² + 2p ]
= [ 4m² + 4n² + 8mn - 4m² - 4n² - 8p ]
= [ 8mn - 8p ]
= 8 [ p² - p ] <----- [ mn = p² ]
Hence, D [ x^2-2(n+m)x+(m^2+n^2+2p) ] ≥ 0 --> for all p ≥ 0 √√
Thus, x^2-2(n+m)x+(m^2+n^2+2p) = 0 has real roots for all p ≥ 0
---> And equal roots only at p = { 0 } ∪ { 1 }
√√ For real and equal roots , the discriminant 'D' of the equation :->
ax² + bx + c = 0 ---> D = b² - 4ac ≥ 0 √
Hence,
----> D [ x² + 2px + mn ] = [ 2p ]² - 4( mn ) = 4 ( p² - mn ) = 0 √√ [ given ]
=> p² = mn √√
Now,
---> D [ x^2-2(n+m)x+(m^2+n^2+2p) ]
= [ 2( m + n ) ]² - 4 [ m² + n² + 2p ]
= [ 4m² + 4n² + 8mn - 4m² - 4n² - 8p ]
= [ 8mn - 8p ]
= 8 [ p² - p ] <----- [ mn = p² ]
Hence, D [ x^2-2(n+m)x+(m^2+n^2+2p) ] ≥ 0 --> for all p ≥ 0 √√
Thus, x^2-2(n+m)x+(m^2+n^2+2p) = 0 has real roots for all p ≥ 0
---> And equal roots only at p = { 0 } ∪ { 1 }
MegaRayquaza16:
they are real and equal so D = 0
Similar questions