Prove that : cos A / (1-tanA) + sinA /( 1-cotA) = sinA + cos A
Answers
Answered by
0
Answer:
L.H.S. = cos A/1 – tanA + sin A/1 – cot A
= cos A/1 – sin A/cos A + sin A/1 – cos A/sin A
= cos A/(cos A – sin A)/cosA + sin A/(sin A – cos A)/sin A
= cos2 A/cos A – sinA + sin2 A/sinA – cos A
= cos2 A – sin2A/(cos A – sin A)
= (cos A + sin A)(cos A – sin A)/(cos A – sin A)
= cos A + sin A
= R.H.S.
Hence proved
Similar questions