If the sides of a triangle abc satisfy the relation 4a^2+9b^2+c^2=2a(a+3b+c)
Answers
Step-by-step explanation:
Please tell what to do.
I'll be glad to help if you do.
Your question is incomplete. Here is the full question:
If the sides of a triangle ABC satisfy the relation
4a²+9b²+c² = 2a(a+3b+c). Then find cos(A).
Concept:
Cosine rule: In a triangle ABC,
a² = b² + c² – 2bc·cos( ∠A), where a is the length of side opposite to ∠A,
b is the length of side opposite to ∠B, c is the length of side opposite to ∠C.
Given:
relation between sides ofΔABC
4a²+9b²+c² = 2a(a+3b+c).
Find:
The value of cos(A).
Solution:
given,
4a²+9b²+c² = 2a(a+3b+c)
⇒ 4a²+9b²+c² = 2a² + 6ab + 2ac
⇒ 2a²+ 9b²+c² - 6ab - 2ac = 0
⇒ (a²+ 9b² - 6ab) + (a²+ c²- 2ac) = 0
⇒ (a - 3b)² + (a - c)² = 0
As all a, b and c are real numbers, for the above equation to be satisfied,
a - 3b = 0 and a - c = 0;
⇒ b = a/3;
⇒ c = a;
Using cosine rule,
a² = b² + c² – 2bc·cos( ∠A)
⇒ a² = (a/3)² + a² – 2(a²/3)·cos( ∠A)
⇒ a² = (a/3)² + a² – 2(a²/3)·cos( ∠A)
⇒ 2a² - a²/9 = – 2(a²/3)·cos( ∠A)
⇒ 17a²/9 = – 2(a²/3)·cos( ∠A)
⇒ cos( ∠A) = -(17/6)
∴ For the given relation, the cosine of ∠A will be cos( ∠A) = -(17/6).
#SPJ2