Math, asked by uchaidipak, 7 months ago

if the sides of a triangular field are 290 m290 and 400 metre by the area of the field​

Answers

Answered by InfiniteSoul
16

\sf{\bold{\green{\underline{\underline{Given}}}}}

  • Sides of triangle = 290m , 290m , 400m

______________________

\sf{\bold{\green{\underline{\underline{To\:Find}}}}}

  • Area = ??

______________________

\sf{\bold{\green{\underline{\underline{Solution}}}}}

\sf{\red{\boxed{\bold{Semi\: Perimeter = \dfrac{perimeter}{2}}}}}

⠀⠀⠀⠀

\sf: \implies{\bold{ Semi\: Perimeter = \dfrac{290 + 290 + 400}{2}}}

⠀⠀⠀⠀

\sf: \implies{\bold{ Semi\: Perimeter = \dfrac{ 980 }{2}}}

⠀⠀⠀⠀

⠀⠀⠀⠀

\sf: \implies{\bold{Semi\: perimeter = 490}}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{area =\sqrt{ s ( s - a )( s - b)( s - c )}}}}}

⠀⠀⠀⠀

\sf: \implies{\bold{area =\sqrt{ 490( 490 - 290)( 490 -  290)( 490 - 400)}}}

⠀⠀⠀⠀

\sf: \implies{\bold{area =\sqrt{ 490 \times 200 \times 200 \times 90}}}

⠀⠀⠀⠀

\sf: \implies{\bold{area =\sqrt{ 7\times 7\times 10\times 10 \times 10 \times 2 \times 2 \times 10 \times 10 \times 3 \times 3\times 10}}}

⠀⠀⠀⠀

\sf: \implies{\bold{ area = 7 \times 2\times 3\times 10 \times 10 \times \times 10 }}

⠀⠀⠀⠀

\sf: \implies{\bold{area = 42 \times 1000}}

⠀⠀⠀⠀

\sf: \implies{\bold{area = 42000 cm^2}}

______________________

\sf{\bold{\green{\underline{\underline{Answer}}}}}

  • Area of Triangular field is 42000cm^2
Answered by Anonymous
121

Given:

  • Sides of triangle are 290m, 290m and 400m

Find:

  • Area of the Triangle

Solution:

we, know that

\sf s =  \dfrac{sum \: of \: all \: sides \: of \: triangle}{2}

So,

\overline{\underbrace{\boxed{\sf s =  \dfrac{a + b + c}{2}}}}

Now,

\sf\to s =  \dfrac{a + b + c}{2}

\sf\to s =  \dfrac{290 + 290+ 400}{2}

\sf\to s =   \cancel{\dfrac{980}{2}} = 490m

\sf\to s = 490m

So, s = 490m

Now,

 \sf \looparrowright Area \: of \: triangle =  \sqrt{s(s - a)(s - b)(s - c)}

So,

 \sf \Rrightarrow Area \: of \: triangle =  \sqrt{s(s - a)(s - b)(s - c)}

 \sf \Rrightarrow Area \: of \: triangle =  \sqrt{490(490 - 290)(490 - 290)(490 - 400)}

 \sf \Rrightarrow Area \: of \: triangle =  \sqrt{490(200)(200)(90)}

 \sf \Rrightarrow Area \: of \: triangle =  \sqrt{490 \times 3600000}

 \sf \Rrightarrow Area \: of \: triangle =  \sqrt{1764000000}

 \sf \Rrightarrow Area \: of \: triangle =  42000m

Hence, area of triangular plot is 42000m

Similar questions