Math, asked by shambhavi210754, 9 months ago


If the simple interest on a sum of money at 5% per annum for 3 years is 1200 then the
compound interest on the same sum for the same period at the same rate will be
(a) 1225
(b) 1236
(c) 1248
(d) 1261​

Answers

Answered by juhik0918
2

Answer:

1248 is your answeri think

Step-by-step explanation:

I hope it is helpful to you and please by me in Brainliest.

Answered by sourya1794
10

Given :-

  • Simple interest (SI) = 1200

  • Rate (R) = 5%

  • Time (T) = 3 years

To find :-

  • Compound interest (CI) = ?

Solution :-

We know that,

\pink{\bigstar}\:\:{\underline{\boxed{\bf\red{SI=\dfrac{P\times{R}\times{T}}{100}}}}}

\rm\longrightarrow\:p=\dfrac{SI\times{100}}{R\times{T}}

\rm\longrightarrow\:p=\dfrac{1200\times{100}}{5\times{3}}

\rm\longrightarrow\:p=\cancel\dfrac{120000}{15}

\rm\longrightarrow\:p=Rs\:8000

Now,

We know that,

\green{\bigstar}\:\:{\underline{\boxed{\bf\pink{Amount\:(A)=p\bigg(1+\dfrac{R}{100}\bigg)^t}}}}

\rm\longrightarrow\:A=8000\times\bigg(1+\dfrac{5}{100}\bigg)^3

\rm\longrightarrow\:A=8000\times\bigg(\dfrac{100+5}{100}\bigg)^3

\rm\longrightarrow\:A=8000\times\bigg(\dfrac{\cancel{105}}{\cancel{100}}\bigg)^3

\rm\longrightarrow\:A=8000\times\bigg(\dfrac{21}{20}\bigg)^3

\rm\longrightarrow\:A=8000\times\dfrac{21}{20}\times\dfrac{21}{20}\times\dfrac{21}{20}

\rm\longrightarrow\:A=21\times{21}\times{21}

\rm\longrightarrow\:A=Rs\:9261

Now,

Compound interest (CI) = Amount - Principal

Compound interest (CI) = 9261 - 8000

Compound interest (CI) = Rs 1261

Hence,the compound interest will be Rs 1261.

So, option (d) 1261 is correct answer.

More information :-

Related to Simple interest,

  • SI = P × R × T/100
  • Rate (r %) = SI × 100/p × t
  • Time (t) = SI × 100/p × r
Similar questions