Math, asked by Mister360, 4 months ago

if the slant height and the base radius of a cone are 10 cm and 8 cm respectively, then find
(i) curved surface area and
(ii) total surface area. [take π = 3.14]
(iii) height
(iv) Volume​

Answers

Answered by Anonymous
9

Answer:

Total surface area: The total area occupied by the surface including the curved part and the base(s).

Curved surface area: The area occupied by the surface excluding the base(s) is known as curved surface area.

Volume: The space occupied by an object, which is measured in cubic units.

A right circular cone is a geometric figure having a circular base. Consider a right circular cone having ‘r’ as the base area, ‘h’ as the height of a cone and ‘l’ as a slant height. Then,

Total surface area = πr(r + l),

Curved surface area = πrl and

Volume = 1/3πr2h

Step-by-step explanation:

please see the attachment

Attachments:
Answered by saanvigrover2007
7

{ \pmb{ \sf{Question : }}}If the slant height and the base radius of a cone are 10 cm and 8 cm respectively, then find

(i) Curved surface area

(ii) Total surface area

(iii) Height

(iv) Volume \\ ⠀⠀

⠀⠀━━━━━━━━━━━━━━━━━━

 \\  \pmb{ \sf {Diagram  : }}

\setlength{\unitlength}{1.2mm}\begin{picture}(5,5)\thicklines\put(0,0){\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\put(-0.5,-1){\line(1,2){13}}\put(25.5,-1){\line(-1,2){13}}\multiput(12.5,-1)(2,0){7}{\line(1,0){1}}\multiput(12.5,-1)(0,4){7}{\line(0,1){2}}\put(18,1.6){\sf{r}}\put(9.5,10){\sf{h}}\end{picture} \\ ⠀⠀

⠀⠀━━━━━━━━━━━━━━━━━━

 \\  \pmb{ \sf { Formula  \: to \:  be  \: used: }}

:\mapsto{\small{\underline{\boxed{\sf{CSA \: of \: cone =πrl }}}}}

:  \mapsto{\small{\underline{\boxed{\sf{TSA \: of \: cone =πr(l + r) }}}}}

:  \mapsto{\small{\underline{\boxed{\sf{ {l}^{2}   =  {r}^{2} +  {h}^{2}  }}}}}

:  \mapsto{\small{\underline{\boxed{\sf{volume \: of \: cone = \frac{1}{3} π {r}^{2}h }}}}}  \\

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━

 \\  \pmb{ \sf { Solution: }}

 \bigstar  \: \sf{CSA = \pi × 10 × 8} \\\sf{   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \purple{251.2 cm^2}}

\bigstar  \: \sf{TSA = \pi × 8(10 + 8)} \\\sf{   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \purple{452.16 cm^2}}

\bigstar  \: \sf{l^2= h^2 + r^2}  \\ \sf{    {10}^{2}    = h^2 +  {8}^{2}} \\  \sf{{10}^{2}  -   {8}^{2} =  {h}^{2} } \\  \sf{{100 - 64    = h^2 }} \\ \sf{{36  = h^2 }} \\ \sf{{ \sqrt{36}    = h }} \\ \sf \purple{{6  cm  = h }}

 \bigstar \:  \sf{volume =  \frac{1}{3}  \times \pi \times 8 \times 8 \times 6 } \\  \sf \purple{ = 401.92 \:cm^{3} }

 \sf  \color{azure}\fcolorbox{pink}{black}{  \:    \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:   \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: @Saanvigrover2007 \:  \:  \:  \:  \:  \:  \:  \:  \:   \:    \:  \:  \:  \:  \:  \:  \:  \:  \: \: \:  \:}

Similar questions