Physics, asked by devpatel3244, 10 months ago

If the speed of light in water is 2.25x108m/s and the speed in vacuum is 3x10 m/s.
Calculate the refractive index of water?​

Answers

Answered by Anonymous
35

\huge{\tt{\underline{Given:-}}}

• Speed of light in water :- 2.25×10^8 m/s

• Speed of light in vacuum:- 3×10^8 m/s

</p><p>\huge{\tt{\underline{To\:Find:-}}}}

• Refractive index (n):-???

</p><p>\huge{\tt{\underline{Solution:-}}}}

As we know, refractive index of medium 2 with respect to medium 1 is:-

{ \tt{n =  \frac{speed \: of \: light \: in \: medium \: 1}{speed \: of \: light \: in \: medium \: 2} }} \\

Here the medium 1 is vacuum so absolute refractive index would be

{ \boxed{{ \tt{n =  \frac{c}{v} }}}} \\

Putting the values;

{ \tt{n  = \frac{3 \times 10 {}^{ 8} }{2.25 \times 10 {}^{8} } }} \\ { \tt{n =  \frac{3 \times{ \cancel{ 10 {}^{8}}} }{2.25 \times { \cancel{10 {}^{8} }}}} } \\  { \boxed{ \bf{ n = 1.33 }}}

•°• The refractive index is 1.33

\huge{\tt{\underline{Concept:-}}}

★The refractive index or index of refraction of a material is a dimensionless number that describes how fast light travels through the material. It is defined as. where c is the speed of light in vacuum and v is the phase velocity of light in the medium.

__________________________________

Answered by ShivamKashyap08
15

Correct Question:

If the speed of light in water is 2.25x10⁸ m/s and the speed in vacuum is 3x10⁸ m/s. Calculate the refractive index of water?

Answer:

  • Refraction Index (μ) of Water is 1.33.

Given:

  1. Speed of Light in Water (v₂) = 2.25 × 10⁸ m/s.
  2. Speed of Light in Vaccum (v₁) = 3 × 10⁸ m/s.

Explanation:

\rule{300}{1.5}

From the Formula we Know,

\large \bigstar \: {\boxed{\tt n_{water} = \dfrac{v_1}{v_2}}}

\bold{Here}\begin{cases}\tt{n} \text{ Denotes Refractive index of Water} \\ \tt{v_1} \text{ Denotes Speed of Light in Vaccum} \\ \tt{v_2} \text{ Denotes Speed of Light in Water}\end{cases}

Now,

\large{\boxed{\tt n_{water} = \dfrac{v_1}{v_2}}}

Substituting the values,

\large{\tt \hookrightarrow n_{water} = \dfrac{3 \times 10^8 \: m/s}{2.25 \times 10^8 \: m/s}}

\large{\tt \hookrightarrow n_{water} = \dfrac{3 \times 10^8}{2.25 \times 10^8}}

\large{\tt \hookrightarrow n_{water} = \dfrac{3}{2.25} \times \dfrac{10^8}{10^8}}

\large{\tt \hookrightarrow n_{water} = \dfrac{3}{2.25} \times \cancel{\dfrac{10^8}{10^8}}}

\large{\tt \hookrightarrow n_{water} = \cancel{\dfrac{3}{2.25}} \times 1}

\large{\tt \hookrightarrow n_{water} =1.33 \times 1}

\large\hookrightarrow{\underline{\boxed{\red{\tt n_{water} =1.33}}}}

Refraction Index (μ) of Water is 1.33.

\rule{300}{1.5}

\rule{300}{1.5}

\large\boxed{\begin{minipage}{7 cm}$ \bigstar \: {\underline{\underline{\tt Important \: Formulas}}}: \\\\ \star \; \tt \dfrac{\sin i}{\sin r} = Refractive \: Index(n) \\\\\\ \star \; \tt Lens \: Formula \rightarrow  \dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u} \\\\\\ \star \: \tt Mirror \: Formula \rightarrow  \dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}\\\\\\ \underline{Note:} \\\\ \star \: \text{f Denotes Focal Length} \\\\ \star \: \text{v Denotes Image Distance} \\\\ \star \: \text{u Denotes Object Distance}$\end{minipage}}

\rule{300}{1.5}

Similar questions