if x =root 5-root3, then find x^2+1/x^2 and x^3+1/x^3
No spams!!
Answers
• x² + 1/x² = (20 - 3√15)/2
• x³ + 1/x³ = 63/4 * (√5 - √3)
EXPLANATION:
Given, x = √5 - √3
Then 1/x = 1/(√5 - √3)
= (√5 + √3)/{(√5 - √3) (√5 + √3)}
= (√5 + √3)/(5 - 3)
= (√5 + √3)/2
& x + 1/x = √5 - √3 + (√5 + √3)/2
= (2√5 - 2√3 + √5 + √3)/2
= (3√5 - √3)/2
Now, x² + 1/x²
= (x + 1/x)² - 2 * x * 1/x
= {(3√5 - √3)/2}² - 2
= (45 - 6√15 + 3)/4 - 2
= (48 - 6√15 - 8)/4
= (40 - 6√15)/4
= (20 - 3√15)/2
& x³ + 1/x³
= (x + 1/x) (x² + 1/x² - x * 1/x)
= (3√5 - √3)/2 * {(20 - 3√15)/2 - 1}
= (3√5 - √3)/2 * (20 - 3√15 - 2)/2
= (3√5 - √3)/2 * (18 - 3√15)/2
= (3√5 - √3)/2 * 3/2 * (6 - √15)
= 3/4 * (3√5 - √3) (6 - √15)
= 3/4 * (18√5 - 15√3 - 6√3 + 3√5)
= 3/4 * (21√5 - 21√3)
= 3/4 * 21 (√5 - √3)
= 63/4 * (√5 - √3)
Step-by-step explanation:
- download the same to you and your family and friends with you to you soon best to offer a free account activity and friends of mine and family are handled by the way it should have it on my