If the square of difference of the zeroes of the quadratic polynomial f(x)= x2+px+45 is equal to 144,
find the value of p.
Answers
Answered by
36
Given quadratic polynomial,
f(x)=x²+px+45
Let A and B be the zeroes of polynomial f(x).
sum of the zeroes=A+B=-p
A+B=-p.............................................1
and,
product of zeroes=AB=45..........2
As per given condition we have,
(A-B)²=144
A²+B²-2AB=144
(A+B)²-4AB=144
putting eq1 and eq2 in above equation we get,
(-p)²-4(45)=144
p²-180=144
p²=324
p=±√324
p=±18
Hence value of p=±18.
f(x)=x²+px+45
Let A and B be the zeroes of polynomial f(x).
sum of the zeroes=A+B=-p
A+B=-p.............................................1
and,
product of zeroes=AB=45..........2
As per given condition we have,
(A-B)²=144
A²+B²-2AB=144
(A+B)²-4AB=144
putting eq1 and eq2 in above equation we get,
(-p)²-4(45)=144
p²-180=144
p²=324
p=±√324
p=±18
Hence value of p=±18.
Answered by
5
Given quadratic polynomial,
f(x)=x²+px+45
Let A and B be the zeroes of polynomial f(x).
sum of the zeroes=A+B=-p
A+B=-p.............................................1
and,
product of zeroes=AB=45..........2
As per given condition we have,
(A-B)²=144
A²+B²-2AB=144
(A+B)²-4AB=144
putting eq1 and eq2 in above equation we get,
(-p)²-4(45)=144
p²-180=144
p²=324
p=±√324
p=±18
Hence value of p=±18.
Similar questions