If the square of difference of the zeros of the quadratic polynomial x2+px+45 is equal to 144 then find p
Answers
Answer:
+18
Step-by-step explanation:
Let α,β be the zeroes of the given quadratic polynomial f(x)=x
2
+px+45
∴α+β=−p,αβ=45
It is given that, (α−β)
2
=144
⇒(α+β)
2
–4αβ=144
⇒(–p)
2
–4×45=144
⇒p
2
–180=144
⇒p
2
=144+180
⇒p
2
=324
⇒p=±
324
∴p=±18
Given
- Square of difference of the zeros of the quadratic polynomial x² + px + 45 is 144.
_____________________________
To Find
- The value of 'p'.
_____________________________
Solution
In the given polynomial, we are aware of the fact that -:
α + β = -p
αβ = 45
So, according to the question,
(α - β)² = 144 -(i)
Apply the below formula to find the answer.
(α - β)² = (α + β)² - 4αβ
Substitute the value of α + β and αβ to continue further.
⇒ (α - β)² = (p)² - 4(45)
⇒ (α - β)² = p² - 180 - (ii)
Taking (i) and (ii)
p² - 180 = 144
p² = 144 + 180
p² = 324
p = √324
p = ±18
∴ The value of 'p' can be 18 or -18.
_____________________________