Math, asked by ADRITA2319, 2 months ago

If the squared difference of the zeros of the quadratic polynomial f(x)= x²+px+45 is equal to 144, find the value of p.​

Answers

Answered by BrainlyRish
40

❍ Let's Consider \bf \alpha and \bf \beta be the two zeroes of Polynomial f(x)= x²+ px + 45 .

⠀⠀⠀⠀⠀P O L Y N O M I A L : f(x)= x²+ px + 45

Here ,

  • Cofficient of x² : 1
  • Cofficient of x : p
  • Constant term : 45

\dag\:\:\sf{ As,\:We\:know\:that\::}\\\\ \qquad \maltese \:\: \bf Sum  \:of \:zeroes\::\\\\

\qquad \dag\:\: \bigg\lgroup \sf{ \alpha + \beta = \dfrac{ -( Cofficient\: of\: x^2)}{ Cofficient \:of\:x}}\bigg\rgroup \\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad:\implies \sf \alpha  + \beta =  \dfrac{ -( Cofficient\: of\: x)}{ Cofficient \:of\:x^2} \\

\qquad:\implies \sf \alpha  + \beta =  \dfrac{ -( p)}{1 } \\

\qquad:\implies \sf \alpha  + \beta =  \dfrac{ - p}{1 } \\

\qquad:\implies \bf \alpha  + \beta =  -p  \qquad \bigg\lgroup \sf{ \:Equation \:1  }\bigg\rgroup  \\

⠀⠀⠀⠀⠀⠀&

\dag\:\:\sf{ As,\:We\:know\:that\::} \\\\ \qquad \maltese\:\: \bf Product  \:of \:zeroes\:: \\\\

\qquad \dag\:\: \bigg\lgroup \sf{ \alpha  \beta = \dfrac{Constant\:Term \:}{ Cofficient \:of\:x^2}}\bigg\rgroup \\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad:\implies \sf   \alpha  \beta = \dfrac{Constant\:Term \:}{ Cofficient \:of\:x^2}\\

\qquad:\implies \sf   \alpha  \beta = \dfrac{45\:}{ 1}\\

\qquad:\implies \bf \alpha   \beta =  45  \qquad \bigg\lgroup \sf{ \:Equation \:2  }\bigg\rgroup  \\

Now ,

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:According \: to\: \: the \: Question \::}}\\

⠀⠀⠀⠀⠀━━ If the squared difference of the zeros of the quadratic polynomial is equal to 144.

\qquad:\implies \sf ( \alpha  - \beta )^2 =  144 \\

\qquad:\implies \sf ( \alpha  + \beta )^2 - 4 \alpha \beta =  144 \\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: Eq.1 \:\:\& \:\:Eq.2 \: \::}}\\

\qquad:\implies \sf ( \alpha  + \beta )^2 - 4 \alpha \beta =  144 \\

\qquad:\implies \sf (-p)^2 - 4 \alpha \beta =  144 \\

\qquad:\implies \sf (-p)^2 - 4 \times 45 =  144 \\

\qquad:\implies \sf p^2 - 180=  144 \\

\qquad:\implies \sf p^2 =  144 + 180 \\

\qquad:\implies \sf p^2 =  324 \\

\qquad:\implies \sf p =  \sqrt{324} \\

\qquad:\implies \sf p =  \pm 18 \\

\qquad :\implies \frak{\underline{\purple{\:p = \pm 18\:\: }} }\bigstar \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:The\:Value\:of\:p \:is\:\bf{  \pm 18}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Answered by XxTechnoBoyxX
3

According to the question we know that The given quadratic polynomial is fx = x²+px+45

we can say that α+ β= -p

and also, say αβ = 45

Now :-

we can show that

( α + β )² - 4αβ = (α - β )²

(α + β)² - 4αβ = 144

we know that (α+β)² = -p and αβ = 44 then we put it value in given equation

So :-

p² - 4 × 45 = 144

p ² - 180 = 144

p² = 144+ 180

p² = 324

p = √324

p = ±18

______________________

# Be Brainly #

Similar questions