Math, asked by anushken400, 2 months ago

If the sum and product of the zeroes of the polynomial ax2 – 6x + c is equal to 12 each, find the values of a and c.​

Answers

Answered by arivumathis2000
12

Step-by-step explanation:

ax^2-6x+C=0

genral eqn of quadratic is x^2-(sum of the roots)x+product of roots=0

sum of the roots =6/a

12=6/a

a=1/2

product of roots=C/a=12

C=12a=12/2=6

pls mark my ans as brainiest

Answered by BrainlyRish
8

❍ Let's consider \alpha and \beta be the two zeroes of Polynomial ax² - 6x + c .

Given that ,

The sum and product of the zeroes of the polynomial ax² – 6x + c is equal to 12 each.

  • Sum of zeroes = Prduct of zeroes

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Cofficients of Given Polynomial ax² - 6x + c :

  • Cofficient of x² = a
  • Cofficient of x = -6
  • Constant Term = c

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\dag\underline {\frak{As,\:We\:know\:that\::}}\\

\qquad \qquad \longmapsto\sf{ \alpha + \beta = \dfrac{-(Cofficient \:of\:x)}{Cofficient \:of\:x^{2}}}\\

Given that ,

\star \alpha + \beta = 12

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Cofficients \::}}\\

\qquad \qquad \longrightarrow \sf{ 12 = \dfrac{-(-6)}{a}}\\

\qquad \qquad \longrightarrow \sf{ 12 = \dfrac{6}{a}}\\

\qquad \qquad \longrightarrow \sf{ 12 a = 6}\\

\qquad \qquad \longrightarrow \sf{ a = \dfrac{\cancel {6}}{\cancel {12}}}\\

⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  a = \dfrac{1}{2}\: }}}}\:\bf{\bigstar}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\qquad \qquad \longmapsto\sf{ \alpha \times \beta = \dfrac{ Constant\:Term}{Cofficient \:of\:x^{2}}}\\

Given that ,

\star \alpha \times \beta = 12

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Cofficients \::}}\\

\qquad \qquad \longrightarrow \sf{ 12 = \dfrac{c}{a}}\\

\qquad \qquad \longrightarrow \sf{ 12a = c}\\

As, We know that :

\qquad \star a = \dfrac{1}{2}\\

And ,

\star \alpha \times \beta = 12

\qquad \qquad \longrightarrow \sf{ \cancel {12} \times \dfrac{1}{\cancel {2}}  = a}\\

⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  c = 6\: }}}}\:\bf{\bigstar}\\

Thus ,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {  The\:value \:of\:a \:is\:\bf{\dfrac{1}{2}}}}}\\

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {  The\:value \:of\:c \:is\:\bf{6}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions