if the sum of 3rd and 11th term is 154 and sum of 6th ad 10th term is 162 find the sum of first 15th term
Answers
Answered by
5
____________________________________
Answered by
2
Answer:
The sum of 3
rd
and 11
th
\sf{term \ is \ 154.}term is 154.
\sf{\implies{The \ sum \ of \ 6^{th} \ and \ 10^{th}}}⟹The sum of 6
th
and 10
th
\sf{term \ is \ 162.}term is 162.
\sf\pink{To \ find:}To find:
\sf{Sum \ of \ first \ 15 \ terms.}Sum of first 15 terms.
\sf\green{\underline{\underline{Solution:}}}
Solution:
\boxed{\sf{tn=a+(n-1)d}}
tn=a+(n−1)d
\sf{According \ to \ the \ first \ condition.}According to the first condition.
\sf{t3+t11=154}t3+t11=154
\sf{\therefore{(a+2d)+(a+10d)=154}}∴(a+2d)+(a+10d)=154
\sf{\therefore{2a+12d=154}}∴2a+12d=154
\sf{\therefore{2(a+6d)=154}}∴2(a+6d)=154
\sf{\therefore{a+6d=\frac{154}{2}}}∴a+6d=
2
154
\sf{\therefore{a+6d=77...(1)}}∴a+6d=77...(1)
\sf{According \ to \ the \ second \ condition.}According to the second condition.
\sf{t6+t10=162}t6+t10=162
\sf{\therefore{(a+5d)+(a+9d)=162}}∴(a+5d)+(a+9d)=162
\sf{\therefore{2a+14d=162}}∴2a+14d=162
\sf{\therefore{2(a+7d)=162}}∴2(a+7d)=162
\sf{\therefore{a+7d=\frac{162}{2}}}∴a+7d=
2
162
\sf{\therefore{a+7d=81...(2)}}∴a+7d=81...(2)
\sf{Subtract \ equation (1) \ from \ equation (2)}Subtract equation(1) from equation(2)
\sf{a+7d=81}a+7d=81
\sf{-}−
\sf{a+6d=77}a+6d=77
_________________
\boxed{\sf{d=4}}
d=4
\sf{Substitute \ d=4, \ in \ equation (1)}Substitute d=4, in equation(1)
\sf{a+6(4)=77}a+6(4)=77
\sf{\therefore{a+24=77}}∴a+24=77
\sf{\therefore{a=77-24}}∴a=77−24
\boxed{\sf{\therefore{a=53}}}
∴a=53
____________________________________
\sf{Here, \ a=53, \ d=4 \ and \ n=15}Here, a=53, d=4 and n=15
\boxed{\sf{Sn=\frac{n}{2}[2a+(n-1)d]}}
Sn=
2
n
[2a+(n−1)d]
\sf{\therefore{S15=\frac{15}{2}[2(53)+(15-1)4]}}∴S15=
2
15
[2(53)+(15−1)4]
\sf{\therefore{S15=\frac{15}{2}[106+56]}}∴S15=
2
15
[106+56]
\sf{\therefore{S15=\frac{15}{2}\times162}}∴S15=
2
15
×162
\sf{\therefore{S15=15\times81}}∴S15=15×81
\sf{\therefore{S15=1215}}∴S15=1215
\sf\purple{\tt{\therefore{The \ sum \ of \ first \ 15 \ terms \ is \ 1215.}}}
Similar questions