Math, asked by phanindhra58, 2 months ago

If the sum of a quadratic equation 3x²+(2k+1)x-(k+5)= 0, is equal to the product of the roots, then
the value of k is
1) 2;
2) 4;
3) 6;
4) 8​

Answers

Answered by imsweet
1

it is showing that I am using rude words so I took screenshot :)

hope it helps

Attachments:
Answered by mathdude500
4

We know that,

If α' and 'β' are two zeroes of polynomial ax² + bx + c, then

\boxed{\purple{\tt Sum\ of\ the\ zeroes=\frac{-b}{a}}}

OR

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

And

\boxed{\purple{\tt Product\ of\ the\ zeroes=\frac{c}{a}}}

OR

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\large\underline\blue{\bold{Given - }}

  • If the sum of a quadratic equation 3x² + (2k+1)x - (k+5)= 0, is equal to the product of the roots.

\large\underline\blue{\bold{To \:  Find :-  }}

  • The value of 'k'.

Cᴀʟᴄᴜʟᴀᴛɪᴏɴ :

According to statement,

\rm :\implies\:Sum\ of\ the\ zeroes \:  =  \:  Product\ of\ the\ zeroes

\rm :\implies\:\dfrac{-coefficient\ of\ x}{coefficient\ of\ x^{2}} = \dfrac{Constant}{coefficient\ of\ x^{2}}

\rm :\implies\:\dfrac{ - (2k + 1)}{3}  = \dfrac{ - (k + 5)}{3}

\rm :\implies\: - 2k - 1 =  - k - 5

\rm :\implies\: \boxed{ \pink{ \bf \:  k\:  =  \tt \:4 }}

Similar questions