Math, asked by nimeshkumar180, 1 year ago

If the sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17, find its 28th
term.​

Answers

Answered by mrrocker1
2

\huge\mathcal\pink{\boxed{\boxed{\boxed{Hlo\:frnd}}}}

\huge\sf\purple{Good \: morning\: :-)}

\huge\mathcal\green{\boxed{Answer\:---}}

Please refer to attachment for answer.

\huge\mathcal\purple{Hope\: it \:helps\:....}

\huge\mathcal\purple{Please\:mark\:as\:the}

\huge\mathcal\green{\boxed{\boxed{brainliest\: (rate)}}}

\huge\mathcal\purple{and\:follow}

Attachments:
Answered by Anonymous
15

\bold{\underline{\underline{\huge{\sf{ANSWER\::}}}}}

Given:

If the sum of first 7 terms of an A.P. is 10 & that of next 7 terms is 17.

To find:

28th term.

Explanation:

We know that formula of the sum of A.P: Sn=\frac{n}{2} [2a+(n-1)d]

We have,

  • S7= 10
  • S14 - S7= 17

\bold{\underline{\underline{\huge{CASE.1}}}}}

→ S7= \frac{7}{2} [2a +(7-1)d]=10

→ S7= \frac{7}{2} [2a+6d]= 10

→ S7= \frac{7}{\cancel{2}}  [\cancel{2}a+\cancel{6}d]=10

→ S7= 7[a+3d]=10

→ 7a +21d= 10......................(1)

\bold{\underline{\underline{\huge{CASE.2}}}}}

S14 - S7 = 17

\frac{14}{2} [2a +(14-1)d] - \frac{7}{2} [2a+(7-1)d]= 17

\frac{14}{2} [2a+13d] - \frac{7}{2} [2a +6d]=17

\frac{28a+182d-14a -42d}{2} =17

→ 28a -14a +182d-42d= 34

→ 14a + 140d =34

→ 2(7a +70d)=34

→ 7a +70d= 17........................(2)

Now,

Subtracting equation (1) from equation (2), we get;

⇒ \cancel{7a} +70d \cancel{-7a} -21d = 17-10

⇒ 70d - 21d = 7

⇒ 49d= 7

⇒ d= \cancel{\frac{7}{49} }

⇒ d= 1/7

Putting the value of d in equation (1),we get;

⇒ 7a +\cancel{21}× \frac{1}{\cancel{7}} =10

⇒ 7a +3 = 10

⇒ 7a = 10 -3

⇒ 7a = 7

⇒ a= \cancel{\frac{7}{7} }

a= 1

We have,

  • Common difference,d= 1/7
  • First term,a= 1

T28 = 1+(28-1)× 1/7

T28 = 1 +27 × 1/7

T28 = 1+\frac{27}{7}

T28= \frac{7+27}{7}

T28= \frac{34}{7}

Thus,

The 28th term of this A.P. is 34/7.

Similar questions