if the sum of first 7 terms of an ap is 49 and that of 17 terms is 289 find the sum of first n terms
Answers
Answered by
1
Answer:
Step-by-step explanation:
Given that sum of first 7 terms is 49 and sum of first 17 terms is 289
To find- Sum of first n terms
Solution-
n/2(2a + 6d) = 49
n/2(2a + 16d) = 289
S7 = 7/2 [2a + (7 - 1)d]
49 = 7/2 [2a + 16d]
7 = (a + 3d)
a + 3d = 7 ... (i)
Similarly,
S17 = 17/2 [2a + (17 - 1)d]
289 = 17/2 (2a + 16d)
17 = (a + 8d)
a + 8d = 17 ... (ii)
Subtracting equation (i) from equation (ii),
5d = 10
d = 2
From equation (i),
a + 3(2) = 7
a + 6 = 7
a = 1
Sn = n/2 [2a + (n - 1)d]
= n/2 [2(1) + (n - 1) × 2]
= n/2 (2 + 2n - 2)
= n/2 (2n)
= n²
Pls mark as brainliest
Similar questions