Math, asked by seemabhargava686, 2 months ago

if the sum of first 7 terms of an AP is 49 and that of 17 terms is 289 then the common difference of the AP is​

Answers

Answered by XxMrZombiexX
247

Given data,

The sum of the first 7 terms of an AP is 49 and the sum of the 17 terms is 289.

We know about the formula of the sum of n terms in Arithmetic progression that is  \red{\sf \: S_n = [2a + (n-1)d]}

‎ ‎‎ ‎ ‎ ‎ ‎ ‎ ‎ ___________________

Sum of first 7 terms = 49

\sf\longmapsto S_n =  \frac{n}{2}   \big\lgroup2a + (n  -  1)d \big\rgroup

Putting values in formals

\sf\longmapsto S_7 =  \frac{7}{2}   \big\lgroup2a + (n  -  1)d \big\rgroup \\  \\ \sf\longmapsto 49=  \frac{7}{2}   \big\lgroup2a + (7 -  1)d \big\rgroup \\  \\ \ \sf\longmapsto 49=  \frac{7}{2}   \big\lgroup2a + (7 -  1)d \big\rgroup \\  \\ \ \sf\longmapsto 49=  \frac{7}{2}   \big\lgroup2a + 6d \big\rgroup \\  \\ \sf\longmapsto \frac{49 \times 2}{7}  = 2a + 6d \\  \\ \sf\longmapsto  \cancel\frac{98}{7}  = 2a + 6d \\  \\ \sf\longmapsto14 = 2a + 6d \\  \\ \sf\longmapsto \frac{ \cancel{14} - \cancel6d}{ \cancel2}  \:\:[dividing \;both\; number\; by \;2] \\  \\ \sf\longmapsto \green{a = 7 - 3d} -  -  - (1)

‎ ‎‎ ‎ ‎ ‎ ‎ ‎ ‎ ___________________

Sum of first 17 terms = 289

\sf\longmapsto S_n =  \frac{n}{2}   \big\lgroup2a + (n  -  1)d \big\rgroup

Putting values in formals

\sf\longmapsto S_{17} =  \frac{17}{2}   \big\lgroup2a + (17-  1)d \big\rgroup \\  \\ \sf\longmapsto 289 =  \frac{17}{2}   \big\lgroup2a + (17  -  1)d \big\rgroup \\  \\ \sf\longmapsto289=  \frac{17}{2}   \big\lgroup2a + 16d \big\rgroup \\  \\ \sf\longmapsto  \frac{289 \times 2}{17}  =     \big\lgroup2a +16d \big\rgroup \\  \\ \sf\longmapsto   \cancel\frac{578}{17}  =     \big\lgroup2a +16d \big\rgroup \\  \\ \sf\longmapsto34 = 2a + 16d \\  \\ \sf\longmapsto \frac{\cancel{34} - \cancel{16} d}{\cancel2}  = a \:  \: \: [dividing \;both\; number\; by \;2]\\  \\ \sf\longmapsto \red{a =  17 - 8d} -  -  -  - (2)

‎ ‎‎ ‎ ‎ ‎ ‎ ‎ ‎ ___________________

We find the value of d From equation (1) and (2)

\sf\longmapsto7 - 3d = 17 - 8d \\  \\ \sf\longmapsto8d - 3d = 17 - 7 \\  \\ \sf\longmapsto5d = 10 \\  \\ \sf\longmapsto \: d = \cancel  \frac{10}{5}  \\  \\ \sf\longmapsto \green{d = 2}

‎ ‎‎ ‎ ‎ ‎ ‎ ‎ ‎ ___________________

We find the value of a Putting values of d in equation (1)

\sf\longmapsto \: a = 7 - 3d \\  \\ \sf\longmapsto \: a = 7 - 3 \times 2 \\  \\ \sf\longmapsto \: a = 7 - 6 \\  \\ \sf\longmapsto \green{a = 1}

‎ ‎‎ ‎ ‎ ‎ ‎ ‎ ‎ ___________________

We need to find sum of first n terms

We can use formula

\sf\longmapsto S_n =  \frac{n}{2}   \big\lgroup2a + (n  -  1)d \big\rgroup

Putting values of a = 1 & d = 2

\qquad \qquad \: \sf\longmapsto \:  \frac{n}{2} \big\lgroup 2 \times 1 +  \big(n - 1 \big)2\big\rgroup \\  \\ \qquad \qquad \: \sf\longmapsto \:  \frac{n}{2} (2 + 2n - 2) \\  \\ \qquad \qquad \: \sf\longmapsto \:  \frac{n}{2} (2 - 2 + 2n) \\  \\ \qquad \qquad \: \sf\longmapsto \:  \frac{n}{2} (0 + 2n) \\  \\ \qquad \qquad \: \sf\longmapsto \:  \frac{n}{ \cancel2}  \times  \cancel2n \\  \\ \qquad \qquad \: \sf\longmapsto \:  \green{ {n}^{2} }

The common difference of the AP be

_________________________

More information about AP

Supposition of an A.P.

  • (1) = Three terms as: a- - d, a, a + d.

  • (2) = Four terms as a - 3d, a - d, a +d, a + 3d.

  • (3) = Five terms as a - 2d, a-d, a, a + d, a + 2d.
Similar questions