Math, asked by preetpragyan, 1 year ago

If the sum of first m terms of an AP is same as the sum of its first n terms (m not equal to n ), show that the sum of its first (m+n) terms is zero.

Answers

Answered by MaheswariS
12

\underline{\textbf{Given:}}

\textsf{Sum of first m terms of an A.P is same as the sum of its first n terms}

\underline{\textbf{To find:}}

\textsf{The sum of its first (m+n) terms is zero}

\underline{\textbf{Solution:}}

\underline{\textbf{Concept used:}}

\textsf{The sum of first n terms of an A.P}

\mathsf{a,a+d,a+2d,\;.\;.\;.\;.\;.\;.is}

\boxed{\mathsf{S_n=\dfrac{n}{2}[2a+(n-1)d]}}

\textsf{As per given data,}

\mathsf{S_m=S_n}

\mathsf{\dfrac{m}{2}[2a+(m-1)d]=\dfrac{n}{2}[2a+(n-1)d]}

\mathsf{m[2a+(m-1)d]=n[2a+(n-1)d]}

\mathsf{2am+m^2d-md=2an+n^2-nd}

\textsf{Rearranging terms, we get}

\mathsf{2a(m-n)+(m^2-n^2)d=(m-n)d}

\mathsf{2a(m-n)+(m-n)(m+n)d=(m-n)d}

\textsf{Divide bothsides by m-n}

\mathsf{2a+(m+n)d=d}

\mathsf{2a+(m+n)d-d=0}

\mathsf{2a+((m+n)-1)d=0}-------(1)

\mathsf{Now,}

\mathsf{S_{m+n}=\dfrac{m+n}{2}[2a+((m+n)-1)d]}

\mathsf{S_{m+n}=\dfrac{m+n}{2}[0]}\;\;\;\;\;\textbf{(Using (1))}

\implies\boxed{\mathsf{S_{m+n}=0}}

\textsf{Hence proved}

Answered by choudharymanju591
1

Answer:

\underline{\textbf{Given:}}

Given:

\textsf{Sum of first m terms of an A.P is same as the sum of its first n terms}Sum of first m terms of an A.P is same as the sum of its first n terms

\underline{\textbf{To find:}}

To find:

\textsf{The sum of its first (m+n) terms is zero}The sum of its first (m+n) terms is zero

\underline{\textbf{Solution:}}

Solution:

\underline{\textbf{Concept used:}}

Concept used:

\textsf{The sum of first n terms of an A.P}The sum of first n terms of an A.P

\mathsf{a,a+d,a+2d,\;.\;.\;.\;.\;.\;.is}a,a+d,a+2d,......is

\boxed{\mathsf{S_n=\dfrac{n}{2}[2a+(n-1)d]}}

S

n

=

2

n

[2a+(n−1)d]

\textsf{As per given data,}As per given data,

\mathsf{S_m=S_n}S

m

=S

n

\mathsf{\dfrac{m}{2}[2a+(m-1)d]=\dfrac{n}{2}[2a+(n-1)d]}

2

m

[2a+(m−1)d]=

2

n

[2a+(n−1)d]

\mathsf{m[2a+(m-1)d]=n[2a+(n-1)d]}m[2a+(m−1)d]=n[2a+(n−1)d]

\mathsf{2am+m^2d-md=2an+n^2-nd}2am+m

2

d−md=2an+n

2

−nd

\textsf{Rearranging terms, we get}Rearranging terms, we get

\mathsf{2a(m-n)+(m^2-n^2)d=(m-n)d}2a(m−n)+(m

2

−n

2

)d=(m−n)d

\mathsf{2a(m-n)+(m-n)(m+n)d=(m-n)d}2a(m−n)+(m−n)(m+n)d=(m−n)d

\textsf{Divide bothsides by m-n}Divide bothsides by m-n

\mathsf{2a+(m+n)d=d}2a+(m+n)d=d

\mathsf{2a+(m+n)d-d=0}2a+(m+n)d−d=0

\mathsf{2a+((m+n)-1)d=0}2a+((m+n)−1)d=0 -------(1)

\mathsf{Now,}Now,

\mathsf{S_{m+n}=\dfrac{m+n}{2}[2a+((m+n)-1)d]}S

m+n

=

2

m+n

[2a+((m+n)−1)d]

\mathsf{S_{m+n}=\dfrac{m+n}{2}[0]}\;\;\;\;\;\textbf{(Using (1))}S

m+n

=

2

m+n

[0](Using (1))

\implies\boxed{\mathsf{S_{m+n}=0}}⟹

S

m+n

=0

\textsf{Hence proved}Hence proved

Similar questions