Math, asked by aayu2020sri, 1 day ago

- if the sum of first n, 2n and 3n terms of an A. P.be S_{1}, S_{2} and S_{3} respectively then prove that S_{3} = 3(S_{2} - S_{1})​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Let assume that a and d represents the first term and common difference of an AP series.

Given that, S_{1}, S_{2}, S_{3} represents the sum of n, 2n and 3n terms of an AP respectively.

We know,

↝ Sum of n  terms of an arithmetic progression is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term.

  • d is the common difference.

  • n is number of terms.

So, using this, we get

\rm \: S_1\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg) \\

\rm \: S_2\:=\dfrac{2n}{2} \bigg(2 \:a\:+\:(2n\:-\:1)\:d \bigg) \\

\rm \: S_3\:=\dfrac{3n}{2} \bigg(2 \:a\:+\:(3n\:-\:1)\:d \bigg) \\

Now, Consider

\rm \: 3(S_{2} - S_{1}) \\

\rm \:  =  \: 3\bigg[\dfrac{2n}{2} \bigg(2 \:a\:+\:(2n\:-\:1)\:d \bigg) - \dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)\bigg]

\rm \:  =  \: \dfrac{3n}{2} \bigg[2\bigg(2 \:a\:+\:(2n\:-\:1)\:d \bigg) -  \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)\bigg]

\rm \:  =  \: \dfrac{3n}{2} \bigg[4 \:a\:+\:(4n\:-\:2)\:d - 2 \:a\: - \:(n\:-\:1)\:d \bigg] \\

\rm \:  =  \: \dfrac{3n}{2} \bigg[2 \:a\:+\:(4n\:-\:2 \:  - n \:  +  \: 1)\:d  \bigg] \\

\rm \:  =  \: \dfrac{3n}{2} \bigg[2 \:a\:+\:(3n\:-\:1)\:d  \bigg] \\

\rm \:  =  \: S_{3} \\

Hence,

\rm\implies \:\boxed{ \rm{ \:S_{3} = 3(S_{2} - S_{1}) \: }} \\

\rule{190pt}{2pt}

Additional Information :-

↝ nᵗʰ term of an arithmetic progression is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the progression.

  • n is the no. of terms.

  • d is the common difference.

Similar questions