Math, asked by StrongGirl, 9 months ago

if the sum of first n terms of series
20 + 19  \frac{3}{5}  + 19 \frac{1}{5}  + 18 \frac{4}{5}  + ....is \: 488
and nth term is negative then find n ​

Answers

Answered by shadowsabers03
25

Given series is an AP of first term a=20 and common difference d=-\dfrac{2}{5}.

Then n^{th} term is,

\longrightarrow a_n=20-\dfrac{2}{5}(n-1)

\longrightarrow a_n=\dfrac{102-2n}{5}

Given that n^{th} term is negative.

\longrightarrow a_n<0

\longrightarrow\dfrac{102-2n}{5}<0

\longrightarrow102-2n<0

\longrightarrow2n>102

\longrightarrow n>51

Given that sum of first n terms is 488.

\longrightarrow\dfrac{n}{2}\,\left(20+a_n\right)=488

\longrightarrow n\left(20+\dfrac{102-2n}{5}\right)=976

\longrightarrow n\left(202-2n\right)=4880

\longrightarrow n\left(101-n\right)=2440

\longrightarrow101n-n^2=2440

\longrightarrow n^2-101n+2440=0

\longrightarrow n^2-61n-40n+2440=0

\longrightarrow n(n-61)-40(n-61)=0

\longrightarrow (n-61)(n-40)=0

Since n>51,

\longrightarrow\underline{\underline{n=61}}

Answered by Anonymous
5

Hey! mate see ur answer in attachment

Attachments:
Similar questions