Math, asked by sainasas72, 4 months ago


If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then
find the sum of the first (p + q) terms.

Answers

Answered by Flaunt
27

\huge\tt{\bold{\underline{\underline{Question᎓}}}}

If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then

find the sum of the first (p + q) terms.

\huge\tt{\bold{\underline{\underline{Answer᎓}}}}

┏━━━━━━━━━━━━━━━━━━━━━━━┓

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ✍️

 \bold{\boxed{ Sn =  \frac{n}{2} (2a + (n - 1)d}}

 =  > sp =  \frac{p}{2} (2a + (p - 1)d

 =  > sq =  \frac{q}{2} (2a + (q - 1)d

\bold{\red{sp = sq}}

 =  >  \frac{p}{2} (2a + (p - 1)d =  \frac{q}{2} (2a + (q - 1)d

 =  > p(2a + (p - 1)d =  \frac{2 \times q}{2} (2a + (q - 1)d

 =  >  p(2a + (p - 1)d) = q(2a + (q - 1)d)

 =  > 2ap + pd(p - 1) = 2aq + qd(q - 1)

 =  > 2ap - 2aq = qd(q - 1) - pd(p - 1)

 =  > 2a(p - q) = d[(q - 1)q - (p - 1)p]

 =  > 2a(p - q) = d( {q}^{2}  - q - ( {p}^{2}  - p)

 =  > 2a(p - q) = d( {q}^{2}  - q -  {p}^{2}  + p)

 =  > 2a(p - q) = d( {q}^{2}  -  {p}^{2}  + p - q)

 =  > 2a(p - q) = -  d( -  {q}^{2}  +  {p}^{2}  - p + q)

 =  > 2a(p - q) =  - d( {p}^{2}  -  {q}^{2}  - (p - q))

 =  > 2a(p - q) =  - d[(p - q)(p + q) - (p - q)]

 =  > 2a(p - q) =  - d[(p - q)(p + q) - (p - q) \times 1]

Taking (p-q) common from R.H.S

 \bold{=  > (p - q)[2a + d(p + q - 1)d] = 0}

 =  > p - q = 0

\bold{ =  > p = 0}

2a + d(p + q - 1) = 0

Now applying sum formula:

\bold{ =  > sn =  \frac{n}{2} [2a + (n - 1)d]}

\bold{ =  > s(p + q) =  \frac{p + q}{2} [2a + (p + q - 1)d]}

 \bold{=  >  \frac{p + q}{2}  \times 0}

 = 0

Therefore,the sum of the first (p + q) terms is 0.

┗━━━━━━━━━━━━━━━━━━━━━━━┛

Similar questions