Math, asked by sauravkumar13, 1 year ago

if the sum of first p terms of an ap is 3n square + 5n find it common difference

Answers

Answered by Anonymous
17
\underline{\bold{Solution:-}}

Let d be the common difference.

Note:- Here u have by mistake type p instead of n.

Sum \: of \: first \: {n}^{th} \: term = 3 {n}^{2} + 5n

For finding the sum of 1 term , use n = 1.

 S_{1} = a_{1} = 3 \times {1}^{2} + 5 \times 1 \\ \\ = 3 + 5 \\ \\ = 8

For finding the sum of 2 terms , use n = 2

S_{2} = 3 \times {2}^{2} + 5 \times 2 \\ \\ = 3 \times 4 + 10 \\ \\ = 12 + 10 \\ \\ = 22

We know that,

 a_{1} + a_{2} = S_{2} \\ \\ 8 + a_{2} = 22 \\ \\ a_{2} = 22 - 8 \\ \\ a_{2} = 14 \\ \\ 8 + (2 - 1)d = 14 \\ \\ d = 14 - 8 \\ \\ \boxed{d = 6}

So, the common difference is 6.
Answered by siddhartharao77
12

Note: Your questions seems to be incorrect.

For p terms, it should be 3p^2 + 5p

              (or)

For n terms, it should be 3n^2 + 5n.

------------------------------------------------------------------------------------

I am considering for n terms.

Given that Sum of first n terms of an AP is 3n^2 + 5n.

When n = 1:

⇒ S₁ = a₁ = 3(1)^2 + 5(1)

               = 8.

So, first term = a₁ = 8.


When n = 2:

⇒ S₂ = 3(2)^2 + 5(2)

        = 12 + 10

        = 22.


So,Second term a₂ = S₂ - S₁

                                = 22 - 8

                                = 14.



Common difference d = a₂ - a₁

                                     = 14 - 8

                                     = 6.



Therefore, common difference d = 6.


Hope it helps!

Similar questions