Math, asked by rambirsingh8885, 2 months ago

if the sum of fist 6 terms of ap is 96 and sum of first 10 term is 240 ,then find the sum of 20 term of ap​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Tʜᴜs,

According to statement,

Given that

☆ Sum of first 6 terms of an AP is 96.

\rm :\longmapsto\:S_6 = 96

\rm :\longmapsto\:\dfrac{6}{2} \bigg(2 \:a\:+\:(6\:-\:1)\:d \bigg) = 96

\rm :\longmapsto\:2a + 5d = 32 -  -  - (1)

Also,

Given that

☆ Sum of 10 terms is 240

\rm :\longmapsto\:S_{10} = 240

\rm :\longmapsto\:\dfrac{10}{2} \bigg(2 \:a\:+\:(10\:-\:1)\:d \bigg) = 240

\rm :\longmapsto\:2a + 9d = 48 -  -  - (2)

○ On Subtracting equation (1) from equation (2), we get

\rm :\longmapsto\:4d = 16

\bf\implies \:d = 4

○ On Substituting d = 4, in equation (1), we get

\rm :\longmapsto\:2a + 5 \times 4 = 32

\rm :\longmapsto\:2a + 20 = 32

\rm :\longmapsto\:2a  = 32 - 20

\rm :\longmapsto\:2a  = 12

\bf\implies \:a = 6

So,

Now we have ,

  • First term of AP, a = 6

  • Common difference of AP, d = 4

  • Number of terms, n = 20

Sum of 20 terms, is

\rm :\longmapsto\:S_{20}\:=\dfrac{20}{2} \bigg(2 \times 6\:+\:(20\:-\:1)\:4 \bigg)

 \rm \:  \:  =  \:  \: 10(12 + 76)

 \rm \:  \:  =  \:  \: 10(88)

 \rm \:  \:  =  \:  \: 880

\bf\implies \:S_{20} = 880

Additional Information :-

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Similar questions