if the sum of n terms of an a.p 3n^2 + 5n and its m^th term is 164, find the value of m.
Answers
Answered by
4
S = 3n2 + 5n
S1 = a1 = 3 + 5 = 8
S2 = a1 + a2 = 12 + 10 = 22
⇒ a2 = S2 - S1 = 22 - 8 = 14
S3 = a1 + a2 + a3 = 27 + 15 = 42
⇒a3 = S3 - S2 = 42 - 22 = 20
∴ Given AP is 8,14,20,.....
Thus a = 8 , d = 6
Given tm = 164.
164 = [a + (n -1)d]
164 = [(8) + (m -1)6]
164 = [8 + 6m - 6]
164 = [2 + 6m]
162= 6m
m = 162 / 6.
∴ m = 27
S1 = a1 = 3 + 5 = 8
S2 = a1 + a2 = 12 + 10 = 22
⇒ a2 = S2 - S1 = 22 - 8 = 14
S3 = a1 + a2 + a3 = 27 + 15 = 42
⇒a3 = S3 - S2 = 42 - 22 = 20
∴ Given AP is 8,14,20,.....
Thus a = 8 , d = 6
Given tm = 164.
164 = [a + (n -1)d]
164 = [(8) + (m -1)6]
164 = [8 + 6m - 6]
164 = [2 + 6m]
162= 6m
m = 162 / 6.
∴ m = 27
Answered by
3
I attached the detailed solution below
Attachments:
Similar questions