Math, asked by Anonymous, 3 months ago

If the sum of 'n' terms of an A.P is 3n+5n and a = 164,
then n =​

Answers

Answered by mathdude500
4

Appropriate Question :-

 \sf \: If \: the \: sum \: of \: n \: terms \: of \: an \: AP \: is \:  {3n}^{2} + 5n \: and \:

 \sf \: a_n \:  = 164 \: , then \: n \:  =  \:

Solution :-

Given that,

\bf :\longmapsto\:S_n = 3 {n}^{2}  + 5n

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2}  \bigg(2\:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is sum of n terms of AP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Tʜᴜs,

\rm :\longmapsto\:\dfrac{n}{2}  \bigg(2\:a\:+\:(n\:-\:1)\:d \bigg) = 3 {n}^{2}  + 5n

\rm :\longmapsto\:2a + nd - d = 6 {n} + 10

\rm :\longmapsto\:(2a - d)+ nd = 6 {n} + 10

☆ On comparing both sides, we get

\rm :\longmapsto\:d = 6 \:

and

\rm :\longmapsto\:2a - d = 10

\rm :\longmapsto\:2a - 6 = 10

\rm :\longmapsto\:2a = 10 + 6

\rm :\longmapsto\:2a = 16

\bf\implies \:a = 8

Now,

It is given that

\rm :\longmapsto\:a_n \:  =  \: 164

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Tʜᴜs,

\rm :\longmapsto\:164 = 8+ (n - 1)6

\rm :\longmapsto\:164 - 8 = (n - 1)6

\rm :\longmapsto\:156= (n - 1)6

\rm :\longmapsto\:26= (n - 1)

\bf\implies \:n \:  =  \: 27

Similar questions