if the sum of the deviations of a set of values x1 x2 x3 ...........xn measured from 50 is -10 and the sum of deviations of the values from 46 is 70 then find its mean
Answers
Answered by
55
Solution :-
The deviation X1, X2, ..........Xn from 50 are (X1 - 50), (X2 - 50), ......(Xn - 50)
Hence, the sum is
(X1 - 50) + (X2 - 50) + ..........(Xn - 50) = - 10
(X1 + X2 + ......Xn) - 50n = - 10 ............(1)
Similarly, we have
(X1 + X2 +..........Xn) - 46n = 70 ............(2)
Subtracting equation (2) from (1), we get.
⇒ (X1 + X2 +.........Xn) - 50n = - 10
(X1 + X2 +.........Xn) - 46n = 70
+ -
____________________________
- 4n = - 80
____________________________
⇒ - 4n = - 80
⇒ 4n = 80
⇒ n = 80/4
⇒ n = 20
Substituting the value of n = 20 in (1)
(X1 + X2 +...........Xn) - 50*20 = - 10
(X1 + X2 +...........Xn) - 1000 = - 10
(X1 + X2 +...........Xn) = 1000 - 10
(X1 + X2 +...........Xn) = 990
Hence, the mean = (X1 + X2 +.........Xn)/n
⇒ 990/20
Mean = 49.5
Answer.
The deviation X1, X2, ..........Xn from 50 are (X1 - 50), (X2 - 50), ......(Xn - 50)
Hence, the sum is
(X1 - 50) + (X2 - 50) + ..........(Xn - 50) = - 10
(X1 + X2 + ......Xn) - 50n = - 10 ............(1)
Similarly, we have
(X1 + X2 +..........Xn) - 46n = 70 ............(2)
Subtracting equation (2) from (1), we get.
⇒ (X1 + X2 +.........Xn) - 50n = - 10
(X1 + X2 +.........Xn) - 46n = 70
+ -
____________________________
- 4n = - 80
____________________________
⇒ - 4n = - 80
⇒ 4n = 80
⇒ n = 80/4
⇒ n = 20
Substituting the value of n = 20 in (1)
(X1 + X2 +...........Xn) - 50*20 = - 10
(X1 + X2 +...........Xn) - 1000 = - 10
(X1 + X2 +...........Xn) = 1000 - 10
(X1 + X2 +...........Xn) = 990
Hence, the mean = (X1 + X2 +.........Xn)/n
⇒ 990/20
Mean = 49.5
Answer.
Similar questions