Math, asked by manish261, 1 year ago

if the sum of the first 2n terms of the AP 2,5,8 .....is equal to the sum of the first n terms of the AP 57,59,61....then n equals

Answers

Answered by wifilethbridge
128

Answer:

11

Step-by-step explanation:

AP : 2,5,8 .....

First Term = a =2

Common Difference = a_2-a_1 =5-2 =3

Formula of sum of first n terms= S_n=\frac{n}{2}(2a+(n-1)d)

Substitute n = 2n

So,  S_{2n}=\frac{2n}{2}(2a+(2n-1)d)

S_{2n}=n(2(2)+(2n-1)3)

S_{2n}=n(4+(2n-1)3)

AP 57,59,61...

First Term = 57

Common Difference = a_2-a_1 =59-57 =2

Formula of sum of first n terms= S_n=\frac{n}{2}(2a+(n-1)d)

So, S_n=\frac{n}{2}(2(57)+(n-1)2)

Now we are given that  the sum of the first 2n terms of the AP 2,5,8 .....is equal to the sum of the first n terms of the AP 57,59,61....

So,  (4+(2n-1)3)=\frac{1}{2}(2(57)+(n-1)2)

2(4+(2n-1)3)=(2(57)+(n-1)2)

8+12n-6=114+2n-2

12n+2=112+2n

12n-2n=112-2

10n=110

n=11

Hence the value of n is 11.

Answered by mysticd
44

Answer:

 n = 11

Step-by-step explanation:

i) Given \: first \:A.P:\\2,5,8,...

 First\:term (a)=2,\\common\: difference (d)=a_{2}-a_{1}\\=5-2=3

We\:know \: that :\\\boxed {Sum\:of \:n\:terms (S_{n})=\frac{n}{2}[2a+(n-1)d]}

Here,\\Sum\:of\:2n\:terms S_{2n}=\frac{2n}{2}[2\times 2+(2n-1)3]\\=n(4+6n-3)\\=n(1+6n)--(1)

ii) Given\:Second \:A.P:\\57,59,61,...,

a=57,\\d=59-57=2

Sum\:of\:n\:terms\:S_{n}\\=\frac{n}{2}[2\times 57+(n-1)2]\\=\frac{2n}{2}[57+n-1]\\=n(56+n)---(2)

According to the problem given,

n(1+6n)=n(56+n)

\implies 1+6n=56+n

\implies 6n-n=56-1

\implies 5n=55

\implies n =\frac{55}{5}

\implies n = 11

Therefore,

 n = 11

•••♪

Similar questions