Math, asked by Nandanj522, 11 months ago

If the sum of the first n terms of a series be 5n² + 2n, then its second term is (a) 56/15 (b) 27/14 (c) 17 (d) 16

Answers

Answered by BrainlyConqueror0901
11

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Second\:term=17}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given: }} \\  \tt:  \implies Sum \: of \: n \: terms = {5n}^{2}  + 2n \\  \\ \red{\underline \bold{To \: Find: }} \\  \tt:  \implies Second \: term( a_{2}) = ?

• According to given question :

 \tt: {\implies  {5n}^{2}  + 2n} \\  \\  \tt \circ \: n = 1,2,3,4,... \\  \\  \bold{As \: we \: know \:that} \\  \tt:  \implies   s_{1} = 5 \times  {1}^{2}  + 2 \times 1 \\  \\ \tt:  \implies   s_{1} =5 + 2 \\  \\  \green{\tt:  \implies   s_{1} =7 =  a_{1}} \\  \\  \bold{For \:  s_{2} : } \\  \tt:  \implies   s_{2} = 5  \times {2}^{2}  + 2 \times 2 \\  \\ \tt:  \implies   s_{2} =5 \times 4 + 4 \\  \\  \green{\tt:  \implies   s_{2} =24} \\  \\  \bold{For \:  a_{2} : } \\  \tt:  \implies   a_{2} =  s_{2} - s_{1} \\  \\ \tt:  \implies   a_{2} = 24 - 7 \\  \\  \green{\tt:  \implies   a_{2} = 17}

Answered by Anonymous
149

Answer:

\bf{\dag}\:\:\boxed{\sf S_n = 5n^2+2n}

\rule{100}{1}

\underline{\bigstar\:\textsf{First Term of AP :}}

\implies\tt S_1=5(1)^2+2(1)\\\\\\:\implies\tt S_1=5 \times 1 + 2\\\\\\:\implies\tt S_1 = 5 + 2\\\\\\:\implies\tt S_1 = 7 = a_1

\rule{200}{2}

\underline{\bigstar\:\textsf{Second Term of AP :}}

\dashrightarrow\tt\:\:a_2=S_2-S_1\\\\\\\dashrightarrow\tt\:\:a_2=(5n^2+2n)-7\\\\\\\dashrightarrow\tt\:\:a_2=[5(2)^2+2(2)]-7\\\\\\\dashrightarrow\tt\:\:a_2=[5\times4 + 4]-7\\\\\\\dashrightarrow\tt\:\:a_2=[20+4]-7\\\\\\\dashrightarrow\tt\:\:a_2=24-7\\\\\\\dashrightarrow\:\:\underline{\boxed{\red{\tt a_2=17}}}

\therefore\:\underline{\textsf{Second Term of AP will be c) \textbf{17}}.}

Similar questions