If the sum of the first n terms of an AP is Sn = 5n - n2 what is the first term? What is the sum
of first two terms ? What is the second term ? Similarly find the 3rd, the 10th and the nth terms.
Answers
Answer:
★ first term = 4
★ Sum of first two terms = 6
★ second term = 2
★ 3rd term = 0
★ 10th term = -14
★ nth term = 6 - 2n
Step-by-step explanation:
Given :
the sum of the first n terms of an AP is Sₙ = 5n - n²
To find :
- the first term
- the sum of first two terms
- the second term
- 3rd term
- 10th term and
- nth term
Solution :
Sum of n terms is given as Sₙ = 5n - n²
➣ To find the first term, put n = 1 in Sₙ = 5n - n² , since sum of 1 term is itself the first term.
S₁ = a₁ = 5(1) - 1²
a₁ = 5 - 1
a₁ = 4
∴ first term = 4
➣ To find the Sum of first two terms, put n = 2 in Sₙ = 5n - n² ,
S₂ = 5(2) - 2²
S₂ = 10 - 4
S₂ = 6
∴ Sum of first 2 terms = 6
➣ Sum of first two terms is the sum of first term and second term.
We know that values of sum of first two terms and first term, substitute.
S₂ = a₁ + a₂
6 = 4 + a₂
a₂ = 6 - 4
a₂ = 2
∴ second term = 2
⮕ The nth term of an A.P. is given by
a₁ denotes first term
d denotes common difference
Common difference is the difference between a term and it's preceding term.
d = a₂ - a₁ = 2 - 4 = -2
➣ To find the 3rd term, put the values of a₁ , d and n in the above formula.
a₃ = 4 + (3 - 1)(-2)
a₃ = 4 + 2(-2)
a₃ = 4 - 4
a₃ = 0
∴ the 3rd term = 0
➣ To find the 10th term, put the values of a₁ , d and n in the above formula.
a₁₀ = 4 + (10 - 1)(-2)
a₁₀ = 4 + 9(-2)
a₁₀ = 4 - 18
a₁₀ = -14
∴ the 10th term = -14
➣ To find the nth term, put the values of a₁ , d in the formula
aₙ = 4 + (n - 1)(-2)
aₙ = 4 - 2n + 2
aₙ = 6 - 2n
- First term = 4
- Sum of first two terms = 6
- Second term = 2
- 3rd term = 0
- 10th term = -14
- nth term = 6 - 2n
- The sum of the first n terms of an AP is Sₙ = 5n - n²
- The first term
- The sum of first two terms
- The second term
- 3rd term
- 10th term
- nth term
Sum of n terms is given as Sₙ = 5n - n²
⬗ To find the first term, put n = 1 in Sₙ = 5n - n² , since sum of 1 term is itself the first term.
S₁ = a₁ = 5(1) - 1²
a₁ = 5 - 1
a₁ = 4
∴ First term = 4
______________________
⬗ To find the Sum of first two terms, put n = 2 in Sₙ = 5n - n² ,
S₂ = 5(2) - 2²
S₂ = 10 - 4
S₂ = 6
∴ Sum of first 2 terms = 6
______________________
⬗ Sum of first two terms is the sum of first term and second term.
We know that values of sum of first two terms and first term, substitute.
S₂ = a₁ + a₂
6 = 4 + a₂
a₂ = 6 - 4
a₂ = 2
∴ Second term = 2
______________________
☆ The nth term of an A.P. is given by
- a₁ denotes first term
- d denotes common difference
Common difference is the difference between a term and it's preceding term.
d = a₂ - a₁ = 2 - 4 = -2
______________________
⬗ To find the 3rd term, put the values of a₁ , d and n in the above formula.
a₃ = 4 + (3 - 1)(-2)
a₃ = 4 + 2(-2)
a₃ = 4 - 4
a₃ = 0
∴ The 3rd term = 0
______________________
⬗ To find the 10th term, put the values of a₁ , d and n in the above formula.
a₁₀ = 4 + (10 - 1)(-2)
a₁₀ = 4 + 9(-2)
a₁₀ = 4 - 18
a₁₀ = -14
∴ The 10th term = -14
______________________
⬗ To find the nth term, put the values of a₁ , d in the formula
aₙ = 4 + (n - 1)(-2)
aₙ = 4 - 2n + 2
aₙ = 6 - 2n
∴ The nth term = 6 - 2n