If the sum of the squares of the zeros of the polynomial p(x)=x²+7x- ∆ is 25 find the value of ∆
Answers
Answered by
5
let the roots be a and b
and we know (a^2)+(b^2) = (a+b)^2 -2ab
and a+b=-7. ,. and ab=-∆
therefore
25=(-7)^2 -2(-∆)
∆=-12
and we know (a^2)+(b^2) = (a+b)^2 -2ab
and a+b=-7. ,. and ab=-∆
therefore
25=(-7)^2 -2(-∆)
∆=-12
Answered by
2
Let, roots be
![\alpha \: and \: \beta \alpha \: and \: \beta](https://tex.z-dn.net/?f=+%5Calpha++%5C%3A+and+%5C%3A++%5Cbeta+)
![\alpha + \beta = 25 \alpha + \beta = 25](https://tex.z-dn.net/?f=+%5Calpha++%2B++%5Cbeta++%3D+25)
![\alpha \times \beta = - delta \alpha \times \beta = - delta](https://tex.z-dn.net/?f=+%5Calpha++%5Ctimes++%5Cbeta++%3D++-++delta)
we know,
a²+b² =(a+b)²-2ab
and,a+b=-7 and ab=-delta
hence,
25=(-7)²-2(-delta)²
hence,
Delta=-12.
we know,
a²+b² =(a+b)²-2ab
and,a+b=-7 and ab=-delta
hence,
25=(-7)²-2(-delta)²
hence,
Delta=-12.
Similar questions