If the sum of the squares of zeroes of the quadratic polynomial f(x) = x^2-8x+p is 40, then find the value of p
Answers
Answered by
8
We know that : Zero of a Quadratic Polynomial is the Root of the respective Quadratic Equation.
If 'α' and 'β' are Roots of a Quadratic Equation ax² + bx + c = 0, then :
✿
✿
Given : Quadratic Polynomial : f(x) = x² - 8x + p
⇒ Quadratic Equation : x² - 8x + p = 0
Let 'Δ' and 'Ф' be the Roots of the Quadratic Equation x² - 8x + p = 0
⇒ Sum of the Roots (Δ + Ф) = 8
⇒ Product of the Roots (Δ × Ф) = p
Given : The Sum of the Squares of Zeroes of the Quadratic Polynomial f(x) = x² - 8x + p = 0 is 40
⇒ The Sum of the Squares of the Roots of the Quadratic Equation x² - 8x + p = 0 should be 40
⇒ Δ² + Ф² = 40
We know that : (a + b)² = a² + b² + 2ab
⇒ a² + b² = (a + b)² - 2ab
⇒ (Δ + Ф)² - 2ΔФ = 40
⇒ 8² - 2(p) = 40
⇒ 2p = 64 - 40
⇒ 2p = 24
⇒ p = 12
Similar questions