Math, asked by vanshika081, 1 month ago

if the sum of the zeroes of the polynomial x2-(k+6)x+2(2k-1) is equal to the product of it's zeroes. find the value of k.​

Answers

Answered by xSoyaibImtiazAhmedx
10

Given,

  • p(x) = x² - (k+6)x + 2(2k+1)

 \bold{Sum  \: of  \: zeroes =   \frac{ - ( - (k + 6))}{1}  }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \bold{ k + 6}

 \bold{Product  \: of  \: zeroes  =  \frac{2(2k + 1)}{1} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \bold{ 4k + 2}

According to the question,

k + 6 = 4k + 2

4k - k = 6 - 2

3k = 4

\large\boxed{\bold{k\:=\frac{4}{3}}}

Similar questions