Math, asked by mrAtharv, 11 months ago

If the sum of the zeros of the polynomial x^2-(k-4)X+2(4k-7) is half of their product, then the value of k is

Answers

Answered by amitkumar44481
4

 \bold \red \star \: \large  \underline{Solution:-}\\

We have,

 \\ {x}^{2}  - (k - 4)x + 2(4k + 7). \\

 \bold{Sum  \: of  \:  Roots} \\  \\   \:  \:  \:  \:  \:  \:  \:    \red \star   \:  \: \alpha  +  \beta  =  \frac{ - b}{a} . \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =   \frac{  \cancel{-}  \{\cancel{-} (k   - 4) \} )}{1}  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  k - 4. \\ \\

 \bold{Product  \: of \:  Roots} \\  \\  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red\star  \:  \:  \alpha  \times  \beta  =  \frac{c}{a} . \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 2(4k  -  7). \\  \\

_________________________________

\\ \\ \tt \bold{According  \: to  \: condition} \\

 \alpha  +  \beta  =  \frac{1}{2}  \times  \alpha  \times  \beta . \\  \\ k - 4 =  \frac{1}{ \cancel2}  \times  \cancel{2}(4k - 7) \\  \\ k - 4 = 4k - 7. \\  \\  - 4 + 7 = 3k. \\  \\ 3 = 3k. \\  \\ k =  \frac{ \cancel3}{ \cancel3} . \\  \\ k = 1. \\  \\

Hence,

 \tt \huge{  The\: value \:of\: k = \red{1}.}

Similar questions