Math, asked by saimansatyajit2016, 10 months ago

If the sum of zeros is -3/2√5 and the product of zeros is -1/2. then find the zeros of the polynomial​

Answers

Answered by Anonymous
2

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ zeroes \ of \ the \ polynomial \ are}

\sf{\frac{1}{\sqrt5} \ and \ \frac{-\sqrt5}{2}.}

\sf\orangr{Given:}

\sf{\implies{Sum \ of \ zeroes=\frac{-3}{2\sqrt5}}}

\sf{\implies{Product \ of \ zeroes=\frac{-1}{2}}}

\sf\pink{To \ find:}

\sf{Zeroes \ of \ the \ polynomial.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Let \ the \ zeroes \ of \ the \ polynomial}

\sf{be \ \alpha \ and \ \beta.}

\sf{Sum \ of \ zeroes=\frac{-3}{2\sqrt5}}

\sf{\therefore{\alpha+\beta=\frac{-3}{2\sqrt5}...(1)}}

\sf{Product \ of \ zeroes=\frac{-1}{2}}

\sf{\therefore{\alpha\beta=\frac{-1}{2}...(2)}}

\sf{According \ to \ the \ identity.}

\sf{(a-b)^{2}=(a+b)^{2}-4ab}

\sf{\therefore{(\alpha-\beta)^{2}=(\alpha+\beta)^{2}-4\alpha\beta}}

\sf{....from \ (1) \ and \ (2)}

\sf{\therefore{(\alpha-\beta)^{2}=(\frac{-3}{2\sqrt5})^{2}-4\times(\frac{-1}{2})}}

\sf{\therefore{(\alpha-\beta)^{2}=\frac{9}{20}+2}}

\sf{\therefore{(\alpha-\beta)^{2}=\frac{9+40}{20}}}

\sf{\therefore{(\alpha-\beta)^{2}=\frac{49}{20}}}

\sf{On \ taking \ square \ root \ of \ both \ sides}

\sf{\alpha-\beta=\frac{7}{2\sqrt5}...(3)}

\sf{Add \ equations \ (1) \ and \ (3)}

\sf{\alpha+\beta=\frac{-3}{2\sqrt5}}

\sf{+}

\sf{\alpha-\beta=\frac{7}{2\sqrt5}}

_______________________

\sf{2\alpha=\frac{-3+7}{2\sqrt5}}

\boxed{\sf{\therefore{\alpha=\frac{1}{\sqrt5}}}}

\sf{Substitute \ \alpha=\frac{1}{\sqrt5} \ in \ equation (2)}

\sf{\therefore{\frac{1}{\sqrt5}\times\beta=\frac{-1}{2}}}

\boxed{\sf{\therefore{\beta=\frac{-\sqrt5}{2}}}}

\sf\purple{\tt{\therefore{The \ zeroes \ of \ the \ polynomial \ are}}}

\sf\purple{\tt{\frac{1}{\sqrt5} \ and \ \frac{-\sqrt5}{2}.}}

Similar questions