Math, asked by goyalkomal1401, 22 days ago

if the sum of zeros of the polynomial
kx square - 5 x square - 11 x - 3 is 5/3 then find k

Answers

Answered by DeeznutzUwU
1

   Answer:

   k=\frac{58}{5}

   Step-by-step explanation:

   Let the polynomial be f(x) = kx^{2} - 5x^{2} -11x -3

⇒ We can write this as

   f(x) = (k-5)x^{2}  - 11x - 3

   We know that the sum of roots of a polynomial, of the form ax^{2} +bx +c = 0,

   is \frac{-b}{a}

⇒ Sum of roots of f(x) = \frac{-(-11)}{k-5} = \frac{5}{3}

\frac{5}{3} = \frac{11}{k-5}

5(k-5) = 11(3)

5k - 25 = 33

5k = 58

k=\frac{58}{5}

Similar questions