Math, asked by bittukumar72706, 3 months ago

If the third term in the binomial expansion of (1 + xlog2x
)
equals 2560, then a possible value of x is:​

Answers

Answered by mathdude500
5

Appropriate Question

If the third term in the binomial expansion of

 \sf \: {\bigg(1 +  {x}^{ log_{2}(x) }  \bigg) }^{5} \: is \: 2560, \: find \: the \: pssible \: value \: of \: x.

Formula Used :-

\rm :\longmapsto\:In \: the \: expansion \: of \:  {(x + a)}^{n}, \: the \: general \: term \: is \:

 \red{ \boxed{ \sf{T_{r + 1} \:  =  \: ^nC_r \:  {(x)}^{n - r}  \:  {a}^{r} }}}

 \blue{ \boxed{ \sf{ ^nC_2\: =  \frac{n(n - 1)}{2}  }}}

 \red{ \boxed{ \sf{ {x}^{y} = z \: then \: y =  log_{x}(z)   \: }}}

 \red{ \boxed{ \sf{  {a}^{ log_{a}(x) } \:  =  \: x}}}

 \red{ \boxed{ \sf{ {a}^{x}  \:  >  \: 0}}}

Let's solve the problem now!!!

Given binomial expansion,

\rm :\longmapsto\:{\bigg(1 +  {x}^{ log_{2}(x) }  \bigg) }^{5}

Now,

It is Given that

\rm :\longmapsto\:T_{3} = 2560

\rm :\longmapsto\:T_{2 + 1} = 2560

\rm :\longmapsto\:^5C_2 \:  {(1)}^{5 - 2}{\bigg({x}^{ log_{2}(x) }  \bigg) }^{2}  = 2560

\rm :\longmapsto\:\dfrac{5 \times 4}{2}  \:  {\bigg({x}^{ log_{2}(x) }  \bigg) }^{2}  = 2560

\rm :\longmapsto\:10 \times   {\bigg({x}^{ log_{2}(x) }  \bigg) }^{2}  = 2560

\rm :\longmapsto\: {\bigg({x}^{ log_{2}(x) }  \bigg) }^{2}  = 256

\rm :\longmapsto\: {\bigg({x}^{ log_{2}(x) }  \bigg) }^{2}  =  {(16)}^{2}

\rm :\longmapsto\: {\bigg({x}^{ log_{2}(x) }  \bigg) }=  {(16)}

\rm :\longmapsto\:Taking \:  log_{2} \: on \: both \: sides \: we \: get

\rm :\longmapsto\:  log_{2}{\bigg({x}^{ log_{2}(x) }  \bigg) }=   log_{2} {(16)}

\rm :\longmapsto\: log_{2}(x) \:  log_{2}(x)  =  log_{2}( {2}^{4} )

\rm :\longmapsto\: (log_{2}(x))^{2}   =  4

\rm :\longmapsto\: log_{2}(x) =   \pm \: 2

\rm :\longmapsto\:x =  {2}^{ \pm \: 2}

\rm :\longmapsto\:x =  {2}^{\: 2}  \:  \:  \: or \:  \:  \: x =  {2}^{ - 2}

\bf\implies \:x = 2 \:  \:  \: or \:  \:  \: \dfrac{1}{4}

Additional Information :-

 \red{ \boxed{ \sf{ ^nC_0  \:  =  \: ^nC_n\: = 1 }}}

 \red{ \boxed{ \sf{ ^nC_1  \:  =  \: ^nC_{n - 1}\: = n}}}

 \red{ \boxed{ \sf{ ^nC_r\: =  \:  \frac{n! }{r!  \:(n - r) ! }  }}}

 \red{ \boxed{ \sf \:  \frac{^nC_r}{^{n}C_{r - 1}}  \sf{ \:  =  \:  \frac{n - r + 1}{r} }}}

 \red{ \boxed{ \sf{ \: ^nC_r \:  +  \: ^{n}C_{r - 1} = \:  ^{n  + 1}C_{r}}}}

Similar questions