Math, asked by adreen126, 11 months ago

if the value of sin theta =5/13 then the value of y=24 tan theta +13cos theta is equal to​

Answers

Answered by Dhruv4886
0

sin theta = 5/13

We need to calculate the value of y= 24 tan theta + 13 cos theta

Using the Triangle law we can fing the value of cos theta and tab theta

cos theta = 12/13

and tan theta = 5/12

So the value of y = 24*(5/12) + 13*(12/13)

                      y= 2*5 + 12

                       y= 10+12

                        y= 22

Therefore the answer will be 22.

Answered by CharmingPrince
12

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Question}}}}}{\bigstar}

□☆□☆□☆□☆□☆□☆□☆□☆□☆□

If\: the\: sin \theta = \displaystyle{\frac{5}{13}} \: then \:what\: is \:the \:value\\ of \:y=24 tan \theta +13cos \theta

□☆□☆□☆□☆□☆□☆□☆□☆□☆□

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Answer}}}}}{\bigstar}

\boxed{\red{\bold{Using\: identity;}}}

\purple{\implies sin^2\theta + cos^2\theta = 1}

{\purple{\implies}}\left( \displaystyle{\frac{5}{13}} \right)^2+ cos^2 \theta = 1

\purple{\implies}cos^2 \theta = 1 - \displaystyle{\frac{25}{169}}

\purple{\implies}cos^2 \theta = \displaystyle{\frac{169 -25}{169}}

{\purple{\implies}}cos^2 \theta = \displaystyle{\frac{144}{169}}

\purple{\implies}cos^2 \theta = \left( \displaystyle{\frac{12}{13}} \right)^2

\boxed{\red{\bold{Taking\: square \: root:}}}

\purple{\implies}cos \theta = \displaystyle{\frac{12}{13}}

\boxed{\red{\bold{To \: find:}}}

\green{\implies 24 tan \theta + 13 cos \theta}

\green{\implies}24 \left( \displaystyle{\frac{sin \theta }{cos \theta}} \right) + 13 cos \theta

\green{\implies}24 \left( \displaystyle{\frac{\frac{5}{13}}{\frac{12}{13}}} \right) + 13 \times \displaystyle{\frac{12}{13}}

\green{\implies}24 \times \displaystyle{\frac{5}{12}} + 12

\green{\implies}10 + 12

\green{\boxed{\implies{\bold{22}}}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Similar questions
Math, 11 months ago