if the volume of cylinder is 770 cm3 and it's diameter is 14cm . find the height of cylinder. please help me if you know the answer. In steps
Answers
Answered by
0
Answer:
Please mark it as brainliest.
Step-by-step explanation:
Right cylinder
Right cylinderSolve for height
Right cylinderSolve for heighth≈5cm
Right cylinderSolve for heighth≈5cmd Diameter
Right cylinderSolve for heighth≈5cmd Diameter 14
Right cylinderSolve for heighth≈5cmd Diameter 14cm
Right cylinderSolve for heighth≈5cmd Diameter 14cmV Volume
Right cylinderSolve for heighth≈5cmd Diameter 14cmV Volume 770
Right cylinderSolve for heighth≈5cmd Diameter 14cmV Volume 770cm³
Right cylinderSolve for heighth≈5cmd Diameter 14cmV Volume 770cm³Using the formula
Right cylinderSolve for heighth≈5cmd Diameter 14cmV Volume 770cm³Using the formulaV=π(d
Right cylinderSolve for heighth≈5cmd Diameter 14cmV Volume 770cm³Using the formulaV=π(d2)2h
Right cylinderSolve for heighth≈5cmd Diameter 14cmV Volume 770cm³Using the formulaV=π(d2)2hSolving forh
Right cylinderSolve for heighth≈5cmd Diameter 14cmV Volume 770cm³Using the formulaV=π(d2)2hSolving forhh=V
Right cylinderSolve for heighth≈5cmd Diameter 14cmV Volume 770cm³Using the formulaV=π(d2)2hSolving forhh=Vπ(d
Right cylinderSolve for heighth≈5cmd Diameter 14cmV Volume 770cm³Using the formulaV=π(d2)2hSolving forhh=Vπ(d2)2=770
Right cylinderSolve for heighth≈5cmd Diameter 14cmV Volume 770cm³Using the formulaV=π(d2)2hSolving forhh=Vπ(d2)2=770π·(14
Right cylinderSolve for heighth≈5cmd Diameter 14cmV Volume 770cm³Using the formulaV=π(d2)2hSolving forhh=Vπ(d2)2=770π·(142)2≈5.00201cm
Answered by
0
Answer:
diameter 14 volume 770
Similar questions
CBSE BOARD XII,
2 months ago
English,
2 months ago
Social Sciences,
5 months ago
Physics,
11 months ago
Physics,
11 months ago