Math, asked by jeonhads97, 5 months ago

if the volume of cylinder is 770 cm3 and it's diameter is 14cm . find the height of cylinder​. please help me if you know the answer​. In steps​

Answers

Answered by AAYUSHOP180
0

Answer:

Please mark it as brainliest.

Step-by-step explanation:

Right cylinder

Right cylinderSolve for height

Right cylinderSolve for heighth≈5cm

Right cylinderSolve for heighth≈5cmd Diameter

Right cylinderSolve for heighth≈5cmd Diameter 14

Right cylinderSolve for heighth≈5cmd Diameter 14cm

Right cylinderSolve for heighth≈5cmd Diameter 14cmV Volume

Right cylinderSolve for heighth≈5cmd Diameter 14cmV Volume 770

Right cylinderSolve for heighth≈5cmd Diameter 14cmV Volume 770cm³

Right cylinderSolve for heighth≈5cmd Diameter 14cmV Volume 770cm³Using the formula

Right cylinderSolve for heighth≈5cmd Diameter 14cmV Volume 770cm³Using the formulaV=π(d

Right cylinderSolve for heighth≈5cmd Diameter 14cmV Volume 770cm³Using the formulaV=π(d2)2h

Right cylinderSolve for heighth≈5cmd Diameter 14cmV Volume 770cm³Using the formulaV=π(d2)2hSolving forh

Right cylinderSolve for heighth≈5cmd Diameter 14cmV Volume 770cm³Using the formulaV=π(d2)2hSolving forhh=V

Right cylinderSolve for heighth≈5cmd Diameter 14cmV Volume 770cm³Using the formulaV=π(d2)2hSolving forhh=Vπ(d

Right cylinderSolve for heighth≈5cmd Diameter 14cmV Volume 770cm³Using the formulaV=π(d2)2hSolving forhh=Vπ(d2)2=770

Right cylinderSolve for heighth≈5cmd Diameter 14cmV Volume 770cm³Using the formulaV=π(d2)2hSolving forhh=Vπ(d2)2=770π·(14

Right cylinderSolve for heighth≈5cmd Diameter 14cmV Volume 770cm³Using the formulaV=π(d2)2hSolving forhh=Vπ(d2)2=770π·(142)2≈5.00201cm

Answered by PurusharthVashist
0

Answer:

diameter 14 volume 770

Similar questions