if the zero of polynomial x`3-6x'2+x+1are a-b,a,a+b . find a and b
Answers
Answered by
0
Answer:
Step-by-step explanation:
Alpha=a-b
Beeta=a
Gama=a+b
p(x)=x^3-6x^2+x+1
On comparing with
ax^3+bx^2+CX+d=0
We get
a=1,b=-6,c=1,d=1
Now,
Alpha+beeta+gama=-b/a
(a-b)+a+(a+b)= -(-6)/1
a-b+a+a+b= 6/1
a+a+a=6
3a=6
a=2
Then,
alpha×beeta×gama=-d/a
(a-b)(a)(a+b)=-1/1
By identity (a+b)(a-b)=a^2-b^2
(a^2-b^2)(a)=-1
a^3-ab^2=-1
Putting a=2
8-2d^2=-1
-2d^2=-1-8
-2d^2=-9
d^2=9/2
d=√9/2
d=3/√2
Similar questions