Math, asked by surrenderedfate001, 9 hours ago

if the zeroes of the polynomial f(x) =2x3+3x2−9x−10 are x-y, x, x+y then the value of x is​

Answers

Answered by Anonymous
8

Appropriate Question :-

If  \bf f ( x ) = \sf 2x³ + 3x² - 9x - 10 and  \quad  \sf x - y \: , \:  x \: , \: x + y \quad are zeroes of  \bf f ( x ) . Find the value of x ?

Solution :-

Before Starting the question , let's recall vieta formula for a  \bf \orange{Cubic \: Polynomial} ;

Let ;

 \quad \qquad \dag \quad  \bf \orange{p ( x )} = \sf ax³ + bx² + cx + d

also

  • If  \alpha ,  \beta and  \gamma are the zeroes of  \bf \orange {p(x)} . Then we have ;

 \quad \qquad { \bigstar { \underline { \boxed { \pmb { \bf { \red { \underbrace { \alpha + \beta + \gamma = - \dfrac{b}{a} }}}}}}}}{\bigstar} \quad \qquad

Using this , in case of  \bf f ( x ) . We can say that ;

 \quad \leadsto \quad \sf ( x - y ) + x + ( x - y ) = - \dfrac{3}{2}

 { : \implies \quad \sf x - y + x + x - y = - \dfrac{3}{2}}

 { : \implies \quad \sf x - \cancel{y} + x + x - \cancel{y} = - \dfrac{3}{2}}

 { : \implies \quad \sf 3x = - \dfrac{3}{2}}

 { : \implies \quad \sf x = - \dfrac{3}{3 \times 2}}

 { : \implies \quad \sf x = - \dfrac{\cancel{3}}{\cancel{3} \times 2}}

 { : \implies \quad \bf \therefore \quad x = - \cfrac{1}{2}}

Henceforth , The Required Answer is  \bf - \dfrac{1}{2}

Similar questions