Math, asked by shreyayadav2004, 1 year ago

if the zeroes of the polynomial x^3 - 3x^2 + X + 1 are a - b, a, and a + b. find a and b​

Answers

Answered by Shreya091
59

\huge{\bf{\underline{\underline{AnSwEr}}}}

GivEn:-

• a polynomial is given, P(x)=\sf\  x^{3} +3x^{2} + x +1

Zeroes = (a-b), a, (a+b)

To FinD:-

• We have to find the value of a and b

StEp-By-step-explanation:-

\thereforeThe given polynomial is a cubic polynomial and the given zeroes are (a-b),a, (a+b)

Also,

From, P(x) =\large\sf\ x^3+3x^2+x-1

a = 1

b = -3

c = 1

So,

\large{\boxed{\tt\star Sum \: of \: zeroes (\alpha \: + \: \beta) = \frac{-b}{a} }}

\large{\boxed{\tt\star  product \: of \: Zeroes(\alpha\beta + \beta\gamma + \gamma\alpha)= \frac{c}{a} }}

Now, using this formula;

\large\leadsto\tt\alpha+ \beta+ \gamma = \frac{-b}{a} \\ \\ \large\leadsto\tt\ a-b +a +a+b = -3 \\ \\ \large\leadsto\tt\ 3a = -3 \\ \\ \large\leadsto\tt\ a= -1

 \rule{250}{2}

\large\leadsto\tt\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}  \\ \\ \large\leadsto\tt\ (a-b) a \: + \: a(a+b) \: + \: (a+b)(a-b) = 1 \\ \\ \large\leadsto\tt\ a^2-ab + a^2+ab+ a^2-b^2 = 1 \\ \\ \large\leadsto\tt\ 3a^2-b^2 =1

Putting the value of a = -1

\large\leadsto\tt\ 3(-1)^2- b^2 = 1 \\ \\ \large\leadsto\tt\ 3 - b^2 = 1 \\ \\ \large\leadsto\tt\ -b^2 = -2

Cancel,the negative sign both side

\large\leadsto\tt\ b= \sqrt{2}


Anonymous: nice ❤️
Similar questions